Assume that , are planar domains and is a homeomorphism belonging to Sobolev space with finite distortion. We prove that if the distortion function of satisfies the condition , then the distortion function of belongs to . We show that this result is sharp in sense that the conclusion fails if . Moreover, we prove that if the distortion function satisfies the condition for some , then belongs to for every . As special case of this result we show that if the distortion function satisfies the condition , then belongs to intersection of for all .
@article{BUMI_2009_9_2_3_699_0, author = {Costantino Capozzoli}, title = {Sufficient Conditions for Integrability of Distortion Function Kf 1}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {699-710}, zbl = {1191.46027}, mrnumber = {2569298}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_699_0} }
Capozzoli, Costantino. Sufficient Conditions for Integrability of Distortion Function Kf 1. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 699-710. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_699_0/
[1] Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire, (to appear). | MR 2580501 | Zbl 1191.30007
- - - ,[2] Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mat. Ser., 48 (2009). | MR 2472875 | Zbl 1182.30001
- - ,[3] The distance to in some function spaces and applications, Differential Integral Equations, 10 (4) (1997), 599-607. | MR 1741764 | Zbl 0889.35027
- ,[4] Mappings of finite distortion: the degree of regularity, Adv. Math., 190 (2005), 300-318. | MR 2102659 | Zbl 1075.30012
- - ,[5] 153, Springer-Verlag, New York, 1969 (second edition 1996) | MR 257325 | Zbl 0176.00801
, Geometric measure theory, Grundlehren Math. Wiss., Band[6] Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124 (2) (1996), 561-565. | MR 1301025 | Zbl 0841.46023
- - ,[7] On the total differentiability of functions of complex variable, Ann. Acad. Sci. Fenn. Math. Ser. A I, 272 (1959), 1-9. | MR 124487 | Zbl 0090.05302
- ,[8] A note on planar homeomorphisms, Rend. Accad. Sc. Fis. Mat. Napoli, LXXIII (2006), 419-421. | MR 2459335
- - ,[9] Regularity of the Inverse of a Planar Sobolev Homeomorphism, Arch. Ration. Mech. Anal., 180 (2006), 75-95. | MR 2211707 | Zbl 1151.30325
- ,[10] Regularity of the inverse of a Sobolev homeomorphism in space, Proc. Roy. Soc. Edinburgh Sect. A, 136 (6) (2006), 1267-1285. | MR 2290133 | Zbl 1122.30015
- - ,[11] A note on extremal mappings of finite distortion, Math. Res. Lett., 12 (2005), 231-238. | MR 2150879 | Zbl 1079.30024
- - ,[12] Homeomorphisms of Bounded Variation, Arch. Rational Mech. Anal., 186 (2007), 351-360. | MR 2350361 | Zbl 1155.26007
- - ,[13] Bi-Sobolev mappings and elliptic equations in the plane, J. Math. Anal. Appl., 355 (2009), 22-32. | MR 2514448 | Zbl 1169.30007
- - - ,[14] | MR 1859913
- , Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Oxford Univ. Press (2001).[15] | MR 344463 | Zbl 0267.30016
- , Quasiconformal Mappings in the Plane (Springer-Verlag, Berlin, 1971).[16] ACL-homeomorphisms in the plane, Oper. Theory Adv. Appl., 193 (2009), 215-225. | MR 2766071 | Zbl 1193.30031
- - ,[17] 26 (3) (Springer-Verlag, Berlin, 1993). | MR 1238941
, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete,