Sufficient Conditions for Integrability of Distortion Function Kf 1
Capozzoli, Costantino
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 699-710 / Harvested from Biblioteca Digitale Italiana di Matematica

Assume that Ω, Ω are planar domains and f:ΩontoΩ is a homeomorphism belonging to Sobolev space Wloc1,1(Ω;2) with finite distortion. We prove that if the distortion function Kf of f satisfies the condition distEXP(Kf,L)<1, then the distortion function Kf-1 of f-1 belongs to Lloc1(Ω). We show that this result is sharp in sense that the conclusion fails if distEXP(Kf,L)=1. Moreover, we prove that if the distortion function Kf satisfies the condition distEXP(Kf,L)=λ for some λ>0, then Kf-1 belongs to Llocp(Ω) for every p(0,12λ). As special case of this result we show that if the distortion function Kf satisfies the condition distEXP(Kf,L)=0, then Kf-1 belongs to intersection of Llocp(Ω) for all p>1.

Publié le : 2009-10-01
@article{BUMI_2009_9_2_3_699_0,
     author = {Costantino Capozzoli},
     title = {Sufficient Conditions for Integrability of Distortion Function Kf 1},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {699-710},
     zbl = {1191.46027},
     mrnumber = {2569298},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_699_0}
}
Capozzoli, Costantino. Sufficient Conditions for Integrability of Distortion Function Kf 1. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 699-710. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_699_0/

[1] Astala, K. - Gill, J. - Rohde, S. - Saksman, E., Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire, (to appear). | MR 2580501 | Zbl 1191.30007

[2] Astala, K. - Iwaniec, T. - Martin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mat. Ser., 48 (2009). | MR 2472875 | Zbl 1182.30001

[3] Carozza, M. - Sbordone, C., The distance to L in some function spaces and applications, Differential Integral Equations, 10 (4) (1997), 599-607. | MR 1741764 | Zbl 0889.35027

[4] Faraco, D. - Koskela, P. - Zhong, X., Mappings of finite distortion: the degree of regularity, Adv. Math., 190 (2005), 300-318. | MR 2102659 | Zbl 1075.30012

[5] Federer, H., Geometric measure theory, Grundlehren Math. Wiss., Band 153, Springer-Verlag, New York, 1969 (second edition 1996) | MR 257325 | Zbl 0176.00801

[6] Fusco, N. - Lions, P. L. - Sbordone, C., Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124 (2) (1996), 561-565. | MR 1301025 | Zbl 0841.46023

[7] Gehring, F. W. - Lehto, O., On the total differentiability of functions of complex variable, Ann. Acad. Sci. Fenn. Math. Ser. A I, 272 (1959), 1-9. | MR 124487 | Zbl 0090.05302

[8] Greco, L. - Sbordone, C. - Trombetti, C., A note on Wloc1,1 planar homeomorphisms, Rend. Accad. Sc. Fis. Mat. Napoli, LXXIII (2006), 419-421. | MR 2459335

[9] Hencl, S. - Koskela, P., Regularity of the Inverse of a Planar Sobolev Homeomorphism, Arch. Ration. Mech. Anal., 180 (2006), 75-95. | MR 2211707 | Zbl 1151.30325

[10] Hencl, S. - Koskela, P. - Malý, J., Regularity of the inverse of a Sobolev homeomorphism in space, Proc. Roy. Soc. Edinburgh Sect. A, 136 (6) (2006), 1267-1285. | MR 2290133 | Zbl 1122.30015

[11] Hencl, S. - Koskela, P. - Onninen, J., A note on extremal mappings of finite distortion, Math. Res. Lett., 12 (2005), 231-238. | MR 2150879 | Zbl 1079.30024

[12] Hencl, S. - Koskela, P. - Onninen, J., Homeomorphisms of Bounded Variation, Arch. Rational Mech. Anal., 186 (2007), 351-360. | MR 2350361 | Zbl 1155.26007

[13] Hencl, S. - Moscariello, G. - Passarelli Di Napoli, A. - Sbordone, C., Bi-Sobolev mappings and elliptic equations in the plane, J. Math. Anal. Appl., 355 (2009), 22-32. | MR 2514448 | Zbl 1169.30007

[14] Iwaniec, T. - Martin, G., Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Oxford Univ. Press (2001). | MR 1859913

[15] Lehto, O. - Virtanen, K., Quasiconformal Mappings in the Plane (Springer-Verlag, Berlin, 1971). | MR 344463 | Zbl 0267.30016

[16] Moscariello, G. - Passarelli Di Napoli, A. - Sbordone, C., ACL-homeomorphisms in the plane, Oper. Theory Adv. Appl., 193 (2009), 215-225. | MR 2766071 | Zbl 1193.30031

[17] Rickman, S., Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, 26 (3) (Springer-Verlag, Berlin, 1993). | MR 1238941