Périodes évanescentes et (a,b)-modules monogènes
Barlet, Daniel
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 651-697 / Harvested from Biblioteca Digitale Italiana di Matematica

In order to describe the asymptotic behaviour of a vanishing period in the degeneration of a one parameter family of complex manifolds, we introduce and use a very simple algebraic structure encoding the corresponding filtered Gauss-Manin connection: regular geometric (a,b)-module generated (as left A~-modules) by one element. The idea is to use not the full Brieskorn module associated to the Gauss-Manin connection but the minimal (regular) filtered differential equation satisfied by the period integral we are interested in. We show that the Bernstein polynomial associated is quite simple to compute for such (a,b)-modules and give a precise description of the exponents which appears in the asymptotic expansion which avoids integral shifts. We show the efficiency of this tool on a couple of explicit computations in some classical (but not so easy) examples.

Publié le : 2009-10-01
@article{BUMI_2009_9_2_3_651_0,
     author = {Daniel Barlet},
     title = {P\'eriodes \'evanescentes et (a,b)-modules monog\`enes},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {651-697},
     zbl = {1193.32017},
     mrnumber = {2569297},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_651_0}
}
Barlet, Daniel. Périodes évanescentes et (a,b)-modules monogènes. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 651-697. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_651_0/

[A'C.73] A'Campo, N., Sur la monodromie des singularités isolées d'hypersurfaces complexes, Inv. Math., 20 (1973), 147-169. | MR 338436

[A-G-V] Arnold, V. - Goussein-Zadé, S. - Varchenko, A., Singularités des applications différentiables, édition MIR, volume 2 (Moscou, 1985).

[Br.70] Brieskorn, E., Die Monodromie der Isolierten Singularita Èten von Hyperflächen, Manuscripta Math., 2 (1970), 103-161. | MR 267607 | Zbl 0186.26101

[B. 93] Barlet, D., Théorie des (a,b)-modules I, in Complex Analysis and Geometry, Plenum Press, (1993), 1-43. | MR 1211877 | Zbl 0824.14002

[B. 95] Barlet, D., Théorie des (a,b)-modules II. Extensions, in Complex Analysis and Geometry, Pitman Research Notes in Mathematics Series366Longman (1997), 19-59. | MR 1477438 | Zbl 0935.32023

[B. 05] Barlet, D., Module de Brieskorn et forme hermitiennes pour une singularité isolée d'hypersuface, revue de l'Inst. E. Cartan (Nancy), 18 (2005), 19-46. | MR 2205835

[B. II] Barlet, D., Sur certaines singularités d'hypersurfaces II, J. Alg. Geom., 17 (2008), 199-254. | MR 2369085 | Zbl 1138.32015

[B. 07] Barlet, D., Sur les fonctions a singularité de dimension 1 (version révisée), preprint Institut E. Cartan (Nancy), n. 42 (2008), 1-26, arXiv:0709.0459 (math. CV and math. AG) À paraȋtre au Bulletin de la SMF. | MR 2572182

[B. 08] Barlet, D., Two finiteness theorem for regular (a,b)-modules, preprint Institut E. Cartan (Nancy) n. 5 (2008), 1-38, arXiv:0801.4320 (math. AG and math. CV).

[B.-S. 04] Barlet, D. - Saito, M., Brieskorn modules and Gauss-Manin systems for non isolated hypersurface singularities, J. Lond. Math. Soc. (2), 76 n. 1 (2007), 211-224. | MR 2351618 | Zbl 1169.32004

[M. 75] Malgrange, B., Le polynôme de Bernstein d'une singularité isolée, in Lect. Notes in Math., 459 (Springer, 1975), 98-119. | MR 419827

[S. 89] Saito, M., On the structure of Brieskorn lattices, Ann. Inst. Fourier, 39 (1989), 27-72. | MR 1011977 | Zbl 0644.32005

[Sc.78] Scherk, J., On the Gauss-Manin connectio of an isolated hypersurface singularity, Math. Ann., 238 (1978), 23-32. | MR 510303 | Zbl 0409.32004