The voltage-current characteristics of two classes of nonlinear resistors (varistors and thermistors) modelled as three-dimensional bodies is derived from the corresponding systems of nonlinear elliptic boundary value problems. Theorems of existence and uniqueness of solutions are presented, together with certain properties of monotonicity of the conductance.
@article{BUMI_2009_9_2_3_635_0, author = {Giovanni Cimatti}, title = {Voltage-Current Characteristcs of Varistors and Thermistors}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {635-650}, zbl = {1181.35275}, mrnumber = {2569296}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_635_0} }
Cimatti, Giovanni. Voltage-Current Characteristcs of Varistors and Thermistors. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 635-650. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_635_0/
[1] Existence of solutions for the time-dependent thermistor problem equations, IMA J. Appl. Math., 48 (1992), 271-281. | MR 1167737 | Zbl 0754.35170
- ,[2] A Numerical determination of the modulus of doubly connected domains by using the Bergman curvature, Math. of Comp., 25 (1971), 743-756. | MR 289758 | Zbl 0234.65035
,[3] Remark on existence and uniqueness for thermistor problem under mixed boundary conditions, Quart. Appl. Math., 47 (1989), 117-121. | MR 987900 | Zbl 0694.35137
,[4] Components and Materials, Philips Technical Manual, August 1979.
[5] | MR 990890 | Zbl 0703.49001
, Direct Methods in the Calculus of Variations (Springer-Verlag, 1989).[6] | MR 199360
, Konstructive Methoden der Konformen Abbildung (Springer-Verlag, 1964).[7] Practical Applied Mathematics, Cambridge Texts in Applied Mathematics (2005). | MR 2134353 | Zbl 1226.00032
,[8]
- , Électrodynamique des Milieux Continus, Editions MIR (Moscou, 1957).[9]
, The Physics of Electrical Contacts (Oxford University Press, 1957).[10] | MR 45823
, Conformal Mapping, McGraw Hill (New York, 1952).[11] | MR 2356201
- , The Maximum Principle (Birkhäuser, 2007).[12] | MR 16009
, The Theory of Sound (Dover, New York, 1945).