The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs
Yang, Wei ; Lou, Jie
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 591-605 / Harvested from Biblioteca Digitale Italiana di Matematica

Assuming that the population of dogs is constant and the population of human satisfies the Logistical model, an interactional model of rabies transmitted between human and dogs is formulated. Two thresholds R0 and R1 which determine the outcome of the disease are identified. Utilizing the method of Lyapunov function and the property of the cooperative systems, we get the global asymptotic stability for both the disease-free equilibrium and the endemic equilibrium. A critical vaccination rate is obtained, which determines whether the dog rabies dies out or becomes endemic. Some suggestions are provided to the prevention and control of rabies according to the results of analysis and simulations.

Publié le : 2009-10-01
@article{BUMI_2009_9_2_3_591_0,
     author = {Wei Yang and Jie Lou},
     title = {The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {591-605},
     zbl = {1178.92050},
     mrnumber = {2569293},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_591_0}
}
Yang, Wei; Lou, Jie. The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 591-605. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_591_0/

[1] Zhang, Y. Z., The epidemiology of rabies in China, Chinese Journal of vaccines and Immulization, 11 (2005), 140-143 (in Chinese).

[2] Zhang, Y. Z. - Xiong, C. L. - Xiao, D. L. - Jiang, R. J. - Wang, Z. X. - Zhang, L. Z. - Fu, Z. F., Human rabies in China, Emerg. Infect. Dis., 11 (2005), 12.

[3] Yu, Y. X., Rabies and the Vaccines, Chinese Medical Techology Press, Beijing, 2001.

[4] Anderson, R. M. - Jackson, H. C. - May, R. M. - Smith, A. M., Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765-771.

[5] Rhodes, C. J. - Atkinson, R. P. D. - Anderson, R. M. - Macdonald, D. W., Rabies in Zimbabwe: reservior dogs and the implications for disease control, Philos. Trans. R. Soc. Lond. B Biol. Sci., 353 (1998), 999-1010.

[6] Kallen, A. - Arcuri, P. - Murray, J. D., A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116 (1985), 377-393. | MR 809307

[7] Allen, L. J. S. - Flores, D. A. - Ratnayake, R. K. - Herbold, J. R., Discrete-time deterministic and stochastic models for the spread of rabies, A. M. C., 132 (2002), 271-292. | MR 1920484 | Zbl 1017.92027

[8] Wang, X. W. - Lou, J., Two dynamical models about rabies between dogs and human, J. Biol. Sys., 16 (2008), 519-529. | Zbl 1355.92132

[9] Hirsch, M. W., Systems of differential equations that are competivitive or cooperative. V. Convergence in 3-dimensional systems, J. D. E., 80 (1989), 94-106. | MR 1003252 | Zbl 0712.34045

[10] Jiang, J. F., A note on a global stability theorem of M. W. Hirsch, Proc. A. M. C., 112 (1991), 803-806. | MR 1043411 | Zbl 0753.34034

[11] Zhao, X., Dynamical systems in population biology, C. M. S., Springer, (2003), 15-20. | MR 1980821

[12] Ma, Z. E. - Zhou, Y. C. - Wang, W. D. - Jin, Z., The Mathematical Modeling and Research of the Endemiology Dynamics, Science Press, Beijing, (2004), 58-59 (in Chinese).

[13] Costill-Chacez, C. - Thieme, H. R., Asymptotically autonomous epidemic models. In: O. Arino et al.(Eds.). Math. Population Dynamics: Analysis of Heterogenieity I Theory of Epidemics, Wuerz, (1995), 33.