We consider the Grassmannian of -dimensional linear subspaces of . We define as the classifying space of the -dimensional linear systems of degree on , whose bases realize a fixed number of polynomial relations of fixed degree , say syzygies of degree . Firstly, we compute the dimension of . In the second part we make a link between and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.
@article{BUMI_2009_9_2_3_579_0, author = {Giovanna Ilardi and Paola Supino and Jean Vall\`es}, title = {Geometry of Syzygies via Poncelet Varieties}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {579-589}, zbl = {1197.13013}, mrnumber = {2569292}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_579_0} }
Ilardi, Giovanna; Supino, Paola; Vallès, Jean. Geometry of Syzygies via Poncelet Varieties. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 579-589. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_579_0/
[1] 129, Springer-Verlag, 1991. | MR 1153249 | Zbl 0744.22001
- , Representation theory, a first course, GTM[2] 133, Springer-Verlag, 1992. | MR 1182558
, Algebraic Geometry, a first course, GTM[3] Linear systems on with syzygies, Comm. Algebra, 34, no. 11 (2006), 4173-4186. | MR 2267579 | Zbl 1109.14010
- ,[4] La stratification du schema de Hilbert des courbes rationnelles de par le fibré tangent restreint, C.R. Acad. Sci. Paris, 311 (1990), 181-184. | MR 1065888 | Zbl 0721.14014
,[5] Vector bundles on the projective plane, Proc. London Math. Soc., 11 (1961), 623-640. | MR 137712 | Zbl 0212.26004
,[6] Poncelet curves and associated theta characteristics, Expositiones Math., 6 (1988), 29-64. | MR 927588 | Zbl 0646.14025
,[7] Fibrés de Schwarzenberger et coniques de droites sauteuses, Bull. Soc. Math. France, 128, no. 3 (2000), 433-449. | MR 1792477
,