Singular Dirichlet Problems with Quadratic Gradient
Martínez-Aparicio, Pedro J.
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 559-574 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the existence of solution for nonlinear elliptic problems with singular lower order terms that have natural growth with respect to the gradient.

Publié le : 2009-10-01
@article{BUMI_2009_9_2_3_559_0,
     author = {Pedro J. Mart\'\i nez-Aparicio},
     title = {Singular Dirichlet Problems with Quadratic Gradient},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {559-574},
     zbl = {1206.35132},
     mrnumber = {2569290},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_3_559_0}
}
Martínez-Aparicio, Pedro J. Singular Dirichlet Problems with Quadratic Gradient. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 559-574. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_3_559_0/

[1] Arcoya, D. - Barile, S. - Martínez-Aparicio, P. J., Singular quasilinear equations with quadratic growth in the gradient without sign condition. J. Math. Anal. Appl., 350 (2009), 401-408. | MR 2476925 | Zbl 1161.35013

[2] Arcoya, D. - Martínez-Aparicio, P. J., Quasilinear equations with natural growth, Rev. Mat. Iberoam., 24 (2008), 597-616. | MR 2459205 | Zbl 1151.35343

[3] Arcoya, D. - Segura De Leon, S., Uniqueness of solutions for some elliptic equations with a quadratic gradient term. ESAIM: Control, Optimization and the Calculus of Variations, (2008) DOI:10.1051/cocv:2008072. | MR 2654196

[4] Boccardo, L., Dirichlet problems with singular and quadratic gradient lower order terms, ESAIM: Control, Optimization and the Calculus of Variations, 14 (2008) 411-426. | MR 2434059 | Zbl 1147.35034

[5] Boccardo, L. - Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. | MR 1025884

[6] Boccardo, L. - Gallouët, T., Strongly nonlinear elliptic equations having natural growth terms and L1 data, Nonlinear Anal. 19 (1992), 573-579. | MR 1183664 | Zbl 0795.35031

[7] Boccardo, L. - Gallouët, T. - Murat, F., A unified presentation of two existence results for problems with natural growth, Progress in partial differential equations: the Metz surveys, 2 (1992), 127-137, Pitman Res. Notes Math. Ser., 296, Longman Sci. Tech., Harlow, 1993. | MR 1248641

[8] Boccardo, L. - Murat, F. - Puel, J-P., Existence de solutions non bornées pour certaines equations quasi-lineaires, Portugal. Math. 41 (1982), 507-534. | MR 766873 | Zbl 0524.35041

[9] Crandall, M. G. - Rabinowitz, P. H. - Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222. | MR 427826 | Zbl 0362.35031

[10] Giachetti, D. - Murat, F., An elliptic problem with a lower order term having singular behaviour, Boll. Un. Mat. Ital. B, (9), II (2009). | MR 2537275 | Zbl 1173.35469

[11] Gilbarg, D. - Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. | MR 737190 | Zbl 0562.35001

[12] Ladyzenskaya, O. - Uralt'Seva, N., Linear and quasilinear elliptic equations; Translated by Scripta Technica. New York, Academic Press, 1968. | MR 244627

[13] Lazer, A. C. - Mckenna, P. J., On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730. | MR 1037213 | Zbl 0727.35057

[14] Leray, J. - Lions, J. L., Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. | MR 194733 | Zbl 0132.10502

[15] Stampacchia, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. | MR 192177 | Zbl 0151.15401