A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
Mainini, Edoardo
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 509-528 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider an energy functional on measures in 2 arising in superconductivity as a limit case of the well-known Ginzburg Landau functionals. We study its gradient flow with respect to the Wasserstein metric of probability measures, whose corresponding time evolutive problem can be seen as a mean field model for the evolution of vortex densities. Improving the analysis made in [AS], we obtain a new existence and uniqueness result for the evolution problem.

Publié le : 2009-06-01
@article{BUMI_2009_9_2_2_509_0,
     author = {Edoardo Mainini},
     title = {A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {509-528},
     zbl = {1175.82080},
     mrnumber = {2537285},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_509_0}
}
Mainini, Edoardo. A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 509-528. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_509_0/

[AG] Ambrosio, L. - Gangbo, W., Hamiltonian ODE's in the Wasserstein space of probability measures, Comm. Pure Appl. Math., LXI, no. 1 (2008), 18-53. | MR 2361303 | Zbl 1132.37028

[AS] Ambrosio, L. - Serfaty, S., A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math., LXI, no. 11 (2008), 1495-1539. | MR 2444374 | Zbl 1171.35005

[AGS] Ambrosio, L. - Gigli, N. - Savaré, G., Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics ETH Zu Èrich, Birkhäuser Verlag, Basel (2005). | MR 2129498

[CRS] Chapman, J. S. - Rubinstein, J. - Schatzman, M., A mean-field model for superconducting vortices, Eur. J. Appl. Math., 7, no. 2 (1996), 97-111. | MR 1388106 | Zbl 0849.35135

[JKO] Jordan, R. - Kinderlehrer, D. - Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. | MR 1617171 | Zbl 0915.35120

[O1] Otto, F., The geometry of dissipative evolution equations: the porous-medium equation, Comm. PDE, 26 (2001), 101-174. | MR 1842429 | Zbl 0984.35089

[SS1] Sandier, E. - Serfaty, S., A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Ann. Scien. Ecole Normale Supérieure, 4e ser 33 (2000), 561-592. | MR 1832824 | Zbl 1174.35552

[SS2] Sandier, E. - Serfaty, S., Limiting Vorticities for the Ginzburg-Landau equations, Duke Math. J., 117 (2003), 403-446. | MR 1979050 | Zbl 1035.82045

[VI] Villani, C., Topics in optimal transportation, Graduate Studies in Mathematics58, American Mathematical Society, Providence, RI, (2003). | MR 1964483 | Zbl 1106.90001

[YU1] Yudovich, V., Nonstationary flow of an ideal incompressible liquid, Zhurn. Vych. Mat., 3 (1963), 1032-1066. | MR 158189

[YU2] Yudovich, V., Some bounds for solutions of elliptic equations, Mat. Sb., 59 (1962), 229-244; English transl. in Amer. Mat. Soc. Transl. (2), 56 (1962). | MR 149062