We consider an energy functional on measures in arising in superconductivity as a limit case of the well-known Ginzburg Landau functionals. We study its gradient flow with respect to the Wasserstein metric of probability measures, whose corresponding time evolutive problem can be seen as a mean field model for the evolution of vortex densities. Improving the analysis made in [AS], we obtain a new existence and uniqueness result for the evolution problem.
@article{BUMI_2009_9_2_2_509_0, author = {Edoardo Mainini}, title = {A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {509-528}, zbl = {1175.82080}, mrnumber = {2537285}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_509_0} }
Mainini, Edoardo. A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 509-528. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_509_0/
[AG] Hamiltonian ODE's in the Wasserstein space of probability measures, Comm. Pure Appl. Math., LXI, no. 1 (2008), 18-53. | MR 2361303 | Zbl 1132.37028
- ,[AS] A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math., LXI, no. 11 (2008), 1495-1539. | MR 2444374 | Zbl 1171.35005
- ,[AGS] | MR 2129498
- - , Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics ETH Zu Èrich, Birkhäuser Verlag, Basel (2005).[CRS] A mean-field model for superconducting vortices, Eur. J. Appl. Math., 7, no. 2 (1996), 97-111. | MR 1388106 | Zbl 0849.35135
- - ,[JKO] The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. | MR 1617171 | Zbl 0915.35120
- - ,[O1] The geometry of dissipative evolution equations: the porous-medium equation, Comm. PDE, 26 (2001), 101-174. | MR 1842429 | Zbl 0984.35089
,[SS1] A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Ann. Scien. Ecole Normale Supérieure, 4e ser 33 (2000), 561-592. | MR 1832824 | Zbl 1174.35552
- ,[SS2] Limiting Vorticities for the Ginzburg-Landau equations, Duke Math. J., 117 (2003), 403-446. | MR 1979050 | Zbl 1035.82045
- ,[VI] 58, American Mathematical Society, Providence, RI, (2003). | MR 1964483 | Zbl 1106.90001
, Topics in optimal transportation, Graduate Studies in Mathematics[YU1] Nonstationary flow of an ideal incompressible liquid, Zhurn. Vych. Mat., 3 (1963), 1032-1066. | MR 158189
,[YU2] Some bounds for solutions of elliptic equations, Mat. Sb., 59 (1962), 229-244; English transl. in Amer. Mat. Soc. Transl. (2), 56 (1962). | MR 149062
,