The Complete Monotonicity of a Function Studied by Miller and Moskowitz
Alzer, Horst
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 449-452 / Harvested from Biblioteca Digitale Italiana di Matematica

Let S(x)=log(1+x)+01[1-(1+t2)x]dtlogtandF(x)=log2-S(x)(0<x). We prove that F is completely monotonic on (0,). This complements a result of Miller and Moskowitz (2006), who proved that F is positive and strictly decreasing on (0,). The sequence {S(k)}(k=1,2,) plays a role in information theory.

Publié le : 2009-06-01
@article{BUMI_2009_9_2_2_449_0,
     author = {Horst Alzer},
     title = {The Complete Monotonicity of a Function Studied by Miller and Moskowitz},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {449-452},
     zbl = {1179.26034},
     mrnumber = {2537281},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_449_0}
}
Alzer, Horst. The Complete Monotonicity of a Function Studied by Miller and Moskowitz. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 449-452. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_449_0/

[1] Alzer, H. - Berg, C., Some classes of completely monotonic functions, II, Ramanujan J., 11 (2006), 225-248. | MR 2267677 | Zbl 1110.26015

[2] Dubourdieu, J., Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math., 7 (1939), 96-111. | MR 436 | Zbl 65.0473.02

[3] Miller, A. R. - Moskowitz, I. S., Difference of sums containing products of binomial coefficients and their logarithms, SIAM Review, 48 (2006), 318-325. | MR 2240594 | Zbl 1088.05006

[4] Moskowitz, I. S. - Newman, R. E. - Crepeau, D. P. - Miller, A. R., Covert channels and anonymizing networks, in: Proceedings of the 2003 Workshop on Privacy in the Electronic Society, P. Samarati and P. Syverson, eds., ACM (New York, 2003), 79-88.

[5] Widder, D. V., The Laplace Transform, Princeton Univ. Press (Princeton, 1941). | MR 5923 | Zbl 67.0384.01