Periodic Solutions of Scalar Differential Equations without Uniqueness
Sȩdziwy, Stanisław
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 445-448 / Harvested from Biblioteca Digitale Italiana di Matematica

The note presents a simple proof of a result due to F. Obersnel and P. Omari on the existence of periodic solutions with an arbitrary period of the first order scalar differential equation, provided equation has an n-periodic solution with the minimal period n > 1.

Publié le : 2009-06-01
@article{BUMI_2009_9_2_2_445_0,
     author = {Stanis\l aw S\c edziwy},
     title = {Periodic Solutions of Scalar Differential Equations without Uniqueness},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {445-448},
     zbl = {1178.34045},
     mrnumber = {2537280},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_445_0}
}
Sȩdziwy, Stanisław. Periodic Solutions of Scalar Differential Equations without Uniqueness. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 445-448. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_445_0/

[1] Andres, J. - Fišer, J. - Jüttner, L., On a multivalued version of the Sharkovskii Theorem and its application to differential inclusions, Set-Valued Analysis, 10 (2002), 1-14. | MR 1888453

[2] Andres, J. - Fürst, T. - Pastor, K., Period two implies all periods for a class of ODEs: A multivalued map approach, Proceedings of the AMS, 135 (2007), 3187-3191. | MR 2322749 | Zbl 1147.34031

[3] Andres, J. - Pastor, K., A version of Sharkovskii Theorem for differential equations, Proceedings of the AMS, 133 (2005), 449-453. | MR 2093067 | Zbl 1063.34030

[4] Coddington, E. A. - Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill (New York, Toronto, London, 1955). | MR 69338 | Zbl 0064.33002

[5] Devaney, R. - Smale, S. - Hirsch, M. W., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Ed. 2 Acad. Press (N. York, 2003). | MR 2144536

[6] Li, T. Y. - Jorke, J. A., Period three implies chaos, American Mathematical Monthly, 82 (1975), 985-992. | MR 385028 | Zbl 0351.92021

[7] Obersnel, F. - Omari, P., Period two implies chaos for a class of ODEs, Proceedings of the AMS, 135 (2007), 2055-2058. | MR 2299480 | Zbl 1124.34335

[8] Obersnel, F. - Omari, P., Old and new results for first order periodic ODEs without uniqueness: a comprehensive study by lower and upper solutions, Advanced Non-linear Studies, 4 (2004), 323-376. | MR 2079818 | Zbl 1072.34041