This article is devoted to sequences of subharmonic functions in , with finite order, whose means (over spheres centered at the origin, with radius r) satisfy such a condition as: , such that , . The paper investigates under which conditions one may extract a pointwise or uniformly convergent subsequence.
@article{BUMI_2009_9_2_2_423_0,
author = {R. Supper},
title = {A Montel Type Result for Subharmonic Functions},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {2},
year = {2009},
pages = {423-444},
zbl = {1178.31001},
mrnumber = {2537279},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_423_0}
}
Supper, R. A Montel Type Result for Subharmonic Functions. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 423-444. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_423_0/
[1] - , The size of the set on which a meromorphic function is large, Proc. London Math. Soc., 36 (3) (1978), 518-539. | MR 481006 | Zbl 0381.30014
[2] , Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund, 3 (1935), 1-118. | Zbl 61.1262.02
[3] - , Subharmonic functions, Vol.I, London Mathematical Society Monographs, Academic Press, London-New York, 9 (1976). | MR 460672 | Zbl 0419.31001
[4] , Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, XXII (1969). | MR 261018 | Zbl 0188.17203
[5] - , Compact operators and normal families of subharmonic functions, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), Prometheus, Prague (1996), 227-231. | MR 1480944 | Zbl 0861.31002
[6] , Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Berlin-Heidelberg-New York, Springer-Verlag, 180 (1972). | MR 350027
[7] , Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel II, Acta Math., 54 (1930), 321-360. | MR 1555311 | Zbl 56.0426.01
[8] , Functions of completely regular growth, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers' Group, Dordrecht, 81 (1992). | MR 1196691
[9] , Subharmonic functions and their Riesz measure, Journal of Inequalities in Pure and Applied Mathematics, 2, no. 2 (2001), Paper No. 16, 14 p. http://jipam.vu.edu.au. | MR 1873856 | Zbl 0988.31001
[10] , Subharmonic functions of order less than one, Potential Analysis, Springer, 23, no. 2 (2005), 165-179. | MR 2139215 | Zbl 1076.31005
[11] , Analyse complexe et distributions; éditeur: Ellipses (2001).