We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution in a singular way and on its gradient with quadratic growth. The prototype of the problem under consideration is where , ; , (and so ). If , we prove the existence of a solution for both the "+" and the "-" signs, while if , we prove the existence of a solution for the "+" sign only.
@article{BUMI_2009_9_2_2_349_0, author = {Daniela Giachetti and Fran\c cois Murat}, title = {An Elliptic Problem with a Lower Order Term Having Singular Behaviour}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {349-370}, zbl = {1173.35469}, mrnumber = {2537275}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_349_0} }
Giachetti, Daniela; Murat, François. An Elliptic Problem with a Lower Order Term Having Singular Behaviour. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 349-370. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_349_0/
[1] Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl., 350 (2009), 401-408. | MR 2476925 | Zbl 1161.35013
- - ,[2] Quadratic quasilinear equations with general singularities, J. Differential Equations (2009).
- - - - - ,[3] Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud., 7 (2007), 299-317. | MR 2308041 | Zbl 1189.35136
- - ,[4] Quasilinear equations with natural growth, Rev. Mat. Iberoamericana, 24 (2008), 597-616. | MR 2459205 | Zbl 1151.35343
- ,[5] Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM - Control, Optimisation and Calculus of Variations, 14 (2008), 411-426. | MR 2434059 | Zbl 1147.35034
,[6] Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. IV, ed. by & , Res. Notes in Math., 84 (1983), Pitman, Boston, 19-73. | MR 716511
- - ,[7] Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213-235. | MR 764943 | Zbl 0557.35051
- - ,[8] Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. | MR 980979 | Zbl 0687.35042
- - ,[9] -estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. | MR 1147866 | Zbl 0785.35033
- - ,[10] Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., 181 (2002), 407-426. | MR 1939689 | Zbl 1097.35050
- - ,[11] Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, in Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, (1998), Gauthier-Villars, Paris, 497-515. | MR 1648236 | Zbl 0917.35039
- ,[12] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Th. Meth. Appl. Series A, 42 (2000), 1309-1326. | MR 1780731 | Zbl 1158.35358
- ,[13] Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, to appear. | MR 3121707 | Zbl 1318.35031
- ,[14] Porous medium type equations with a quadratic gradient term, Boll. U.M.I. sez. B, 10 (2007), 753-759. | MR 2351544 | Zbl 1177.35124
- ,[15] Existence results for a class of porous medium type equations with a quadratic gradient term, J. Evol. Eq., 8 (2008), 155-188. | MR 2383486 | Zbl 1142.35043
- ,[16] Singular quasilinear equations with quadratic gradient, to appear.
,[17] Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492. | MR 2210085 | Zbl 1158.35364
- ,