We provide a variational justification for shearable-plate models that generalize the classic Reissner-Mindlin model. Firstly, we give an argument leading to choose a fairly general linearly elastic monoclinic material response. Secondly, we prove that, for materials in such constitutive class, the variational limit of certain suitably scaled 3D energies is a functional whose minimum over a maximal subspace of admissible functions coincides with the minimum of the generalized Reissner-Mindlin functional.
@article{BUMI_2009_9_2_2_321_0, author = {Danilo Percivale and Paolo Podio-Guidugli}, title = {A General Linear Theory of Elastic Plates and its Variational Validation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {321-341}, zbl = {1170.74030}, mrnumber = {2537273}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_321_0} }
Percivale, Danilo; Podio-Guidugli, Paolo. A General Linear Theory of Elastic Plates and its Variational Validation. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 321-341. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_321_0/
[1] | MR 1968440
, -convergence for beginners. Oxford University Press, 2002.[2] | MR 1201152
, An Introduction to -convergence. Birkhäuser, 1993.[3] VIa/2, Ed., Springer 1972.
, The Linear Theory of Elasticity. In Handbuch der Physik[4] Dynamics of incoherent elastic slabs. Fortcoming (2008).
- ,[5] How to use reactive stresses to improve plate-theory approximations of the stress field in a linearly elastic plate-like body. Int. J. Sol. & Struct. 44 (5) (2007), 1337-1369. | MR 1916966 | Zbl 1126.74027
- ,[6] Une approche formelle unifiée des théories de plaques et poutres linéairement élastiques. C.R. Acad. Sci. Paris, Ser. I, 343, (2006), 675-678. | MR 2271746 | Zbl 1108.74036
- ,[7] Deduction by scaling: a unified approach to classic plate and rod theories. Asympt. Anal., 51 (2) (2007), 113-131. | MR 2311156 | Zbl 1121.35036
- ,[8] The Reissner-Mindlin plate theory via -convergence. C.R. Acad. Sci. Paris, Ser. I, 343 (2006), 437-440. | MR 2259887 | Zbl 1102.74031
- - ,[9] A justification of the Reissner-Mindlin plate theory through variational convergence. Anal. 5 (2) (2007), 165-182. | MR 2311707 | Zbl 1109.74031
- - ,[10] An exact derivation of the thin plate equation. J. Elasticity, 22 (1989), 121-133. | MR 1040755 | Zbl 0692.73049
,[11] Some recent results on Saint-Venant Problem. Pp. 35-45 of Atti dei Convegni Lincei N. 140, Giornata Lincea su "Il Problema di de Saint-Venant: Aspetti Teorici e Applicativi" (Roma, 6 March 1997). | MR 1783020
,