Some Nonlinear Evolution Problems in Mixed Form
Stefanelli, Ulisse ; Visintin, Augusto
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 303-320 / Harvested from Biblioteca Digitale Italiana di Matematica

This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.

Publié le : 2009-06-01
@article{BUMI_2009_9_2_2_303_0,
     author = {Ulisse Stefanelli and Augusto Visintin},
     title = {Some Nonlinear Evolution Problems in Mixed Form},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {303-320},
     zbl = {1172.35303},
     mrnumber = {2537272},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_2_303_0}
}
Stefanelli, Ulisse; Visintin, Augusto. Some Nonlinear Evolution Problems in Mixed Form. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 303-320. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_2_303_0/

[AL83] Alt, H. W. - Luckhaus, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3 (1983), 311-341. | MR 706391 | Zbl 0497.35049

[Arn81] Arnold, D. N., Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, 3 (1981), 405-421. | MR 627113 | Zbl 0446.73066

[AH58] Arrow, K. J. - Hurwicz, L., Gradient methods for concave programming: local results. In: Studies in linear and non-linear programming (K. J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford (1958), 117-126. | MR 108399

[Bab73] I BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1972/73), 179-192. | MR 359352

[Bar76] Barbu, V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976. | MR 390843 | Zbl 0328.47035

[BF91] Brezzi, F. - Fortin, M., Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics (Springer-Verlag, New York, 1991). | MR 1115205 | Zbl 0788.73002

[BG04] Boffi, D. - Gastaldi, L., Analysis of finite element approximation of evolution problems in mixed form, SIAM J. Numer. Anal., 42, 4 (2004), 1502-1526 (electronic). | MR 2114288 | Zbl 1080.65089

[BN90] Baranger, J. - Najib, K., Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau, Numer. Math., 58, 1 (1990), 35-49. | MR 1069652 | Zbl 0702.76007

[Bre71] Brezis, H., Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations. In Contrib. to nonlin. functional analysis. Proc. Sympos. Univ. Wisconsin, Madison (Academic Press, New York, 1971), 101-156. | MR 394323

[Bre73] Brezis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Number 5 in North Holland Math. Studies. North-Holland, Amsterdam, 1973. | MR 348562 | Zbl 0252.47055

[Bre74] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. FrancËaise Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (R-2) (1974), 129-151. | MR 365287 | Zbl 0338.90047

[CFA06] Cascón, J. M. - Ferragut, L. - Asensio, M. I., Space-time adaptive algorithm for the mixed parabolic problem, Numer. Math., 103, 3 (2006), 367-392. | MR 2221054 | Zbl 1118.65098

[CHZ03] Ciarlet Jr, P.. - Huang, J. - Zou, J., Some observations on generalized saddle-point problems, SIAM J. Matrix Anal. Appl., 25, 1 (2003), 224-236 (electronic). | MR 2002909 | Zbl 1130.35300

[CV90] Colli, P. - Visintin, A., On a class of doubly nonlinear evolution problems, Comm. Partial Differential Equations, 15, 5 (1990), 737-756. | MR 1070845 | Zbl 0707.34053

[CW06] Christiansen, S. H. - Winther, R., On constraint preservation in numerical simulations of Yang-Mills equations, SIAM J. Sci. Comput., 28, 1 (2006), 75-101 (electronic). | MR 2219288 | Zbl 1115.70003

[DS81] Dibenedetto, E. - Showalter, R. E., Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12, 5 (1981), 731-751. | MR 625829 | Zbl 0477.47037

[Gat02] Gatica, G. N., Solvability and Galerkin approximations of a class of non-linear operator equations, Z. Anal. Anwendungen, 21, 3 (2002), 761-781. | MR 1929431 | Zbl 1024.65044

[GM75] Glowinski, R. - Marrocco, A., Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle-RAIRO Analyse Numérique, 9 (R-2) (1975), 41-76. | MR 388811 | Zbl 0368.65053

[HR82] Heywood, J. G. - Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (2) (1982), 275-311. | MR 650052 | Zbl 0487.76035

[JT81] Johnson, C. - Thomée, V., Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15 (1) (1981), 41-78. | MR 610597

[KSWK06] Korsawe, J. - Starke, G. - Wang, W. - Kolditz, O., Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches, Comput. Methods Appl. Mech. Engrg., 195 (9-12) (2006), 1096-1115. | MR 2195297

[Le82] Le Tallec, P., Existence and approximation results for nonlinear mixed problems: application to incompressible finite elasticity, Numer. Math., 38 (3) (1981/82), 365-382. | MR 654103 | Zbl 0487.76008

[MF01] Manouzi, H. - Farhloul, M., Mixed finite element analysis of a non-linear three-fields Stokes model, IMA J. Numer. Anal., 21 (1) (2001), 143-164. | MR 1812270 | Zbl 0971.76049

[Pan98] Pani, A. K., An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (2) (1998), 712-727 (electronic). | MR 1618886 | Zbl 0915.65107

[Qua80] Quarteroni, A., Mixed approximations of evolution problems, Comput. Methods Appl. Mech. Engrg., 24 (2) (1980), 137-163. | MR 597041 | Zbl 0457.73049

[Rud91] Rudin, W., Functional analysis, International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, second edition, 1991. | MR 1157815

[Sch77] Scheurer, B., Existence et approximation de points selles pour certains problèmes non linéaires, RAIRO Anal. Numér., 11 (4) (1977), 369-400, iv. | MR 464014 | Zbl 0371.65025

[Sho97] Showalter, R. E., Monotone operators in Banach space and nonlinear partial differential equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. | MR 1422252 | Zbl 0870.35004

[SS04] Showalter, R. E. - Stefanelli, U., Diffusion in poro-plastic media, Math. Methods Appl. Sci., 27 (18) (2004), 2131-2151. | MR 2102316 | Zbl 1095.74011

[Tem77] Temam, R., Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2. | MR 603444 | Zbl 0383.35057

[Tho06] Thomée, V., Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 2006. | MR 2249024

[Uza58] Uzawa, H., Gradient methods for concave programming: global stability in the strictly concave case. In: Studies in linear and non-linear programming (K.J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford 1958, 127-132. | MR 108399

[Yos80] Yosida, K., Functional analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, sixth edition, 1980. | MR 617913