In this paper we study the nonlinear Schrödinger-Maxwell equations If is a positive constant, we prove the existence of a ground state solution for . The non-constant potential case is treated for , and possibly unbounded below.
@article{BUMI_2009_9_2_1_93_0, author = {A. Azzollini and A. Pomponio}, title = {A Note on the Ground State Solutions for the Nonlinear Schr\"odinger-Maxwell Equations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {93-104}, zbl = {1173.35674}, mrnumber = {2493646}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_93_0} }
Azzollini, A.; Pomponio, A. A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 93-104. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_93_0/
[1] Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, (2008), 90-108. | MR 2422637 | Zbl 1147.35091
- ,[2] An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. | MR 1659454
- ,[3] Solitons and the electromagnetic field, Math. Z., 232, (1999), 73-102. | MR 1714281 | Zbl 0930.35168
- - - ,[4] Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134, (2004), 893-906. | MR 2099569 | Zbl 1064.35182
- ,[5] Multiple solutions to some singular nonlinear Schrödinger equations, Electron. J. Differ. Equ.2001, 9, (2001), 1-14. | MR 1811782
,[6] The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 109-145. | MR 778970 | Zbl 0541.49009
,[7] The concentration-compactness principle in the calculus of variation. The locally compact case. Part II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 223-283. | MR 778974 | Zbl 0704.49004
,[8] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291. | MR 1162728
,[9] The Schrödinger-Poisson equation under the effect of a nonlinear local term, Journ. Func. Anal., 237, (2006), 655-674. | MR 2230354 | Zbl 1136.35037
,[10] Positive solution for a nonlinear stationary Schrödinger-Poisson system in , Discrete Contin. Dyn. Syst., 18, (2007), 809-816. | MR 2318269
- ,[11] 24. Birkhäuser Boston, Inc., Boston, MA, 1996. | MR 1400007
, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications,