A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations
Azzollini, A. ; Pomponio, A.
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 93-104 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper we study the nonlinear Schrödinger-Maxwell equations {-Δu+V(x)u+ϕu=|u|p-1uin3,-Δϕ=u2in3. If V is a positive constant, we prove the existence of a ground state solution (u,ϕ) for 2<p<5. The non-constant potential case is treated for 3<p<5, and V possibly unbounded below.

Publié le : 2009-02-01
@article{BUMI_2009_9_2_1_93_0,
     author = {A. Azzollini and A. Pomponio},
     title = {A Note on the Ground State Solutions for the Nonlinear Schr\"odinger-Maxwell Equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {93-104},
     zbl = {1173.35674},
     mrnumber = {2493646},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_93_0}
}
Azzollini, A.; Pomponio, A. A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 93-104. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_93_0/

[1] Azzollini, A. - Pomponio, A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, (2008), 90-108. | MR 2422637 | Zbl 1147.35091

[2] Benci, V. - Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. | MR 1659454

[3] Benci, V. - Fortunato, D. - Masiello, A. - Pisani, L., Solitons and the electromagnetic field, Math. Z., 232, (1999), 73-102. | MR 1714281 | Zbl 0930.35168

[4] D'Aprile, T. - Mugnai, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134, (2004), 893-906. | MR 2099569 | Zbl 1064.35182

[5] Lazzo, M., Multiple solutions to some singular nonlinear Schrödinger equations, Electron. J. Differ. Equ.2001, 9, (2001), 1-14. | MR 1811782

[6] Lions, P. L., The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 109-145. | MR 778970 | Zbl 0541.49009

[7] Lions, P. L., The concentration-compactness principle in the calculus of variation. The locally compact case. Part II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 223-283. | MR 778974 | Zbl 0704.49004

[8] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291. | MR 1162728

[9] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, Journ. Func. Anal., 237, (2006), 655-674. | MR 2230354 | Zbl 1136.35037

[10] Wang, Z. - Zhou, H., Positive solution for a nonlinear stationary Schrödinger-Poisson system in 3, Discrete Contin. Dyn. Syst., 18, (2007), 809-816. | MR 2318269

[11] Willem, M., Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. | MR 1400007