In the first part of the paper we complete the classification of the arithmetical Cohen-Macaulay vector bundles of rank 2 on a smooth prime Fano threefold. In the second part, we study some moduli spaces of these vector bundles, using the decomposition of the derived category of provided by Kuznetsov, when the genus of is 7 or 9. This allows to prove that such moduli spaces are birational to Brill-Noether varieties of vector bundles on a smooth projective curve . When the second Chern class is low we are able to give a more precise description of the moduli space of rank-2 semistable sheaves with fixed Chern classes . If , we show that the moduli space is isomorphic to a smooth irreducible Brill-Noether variety of dimension 3. Moreover the set of vector bundles contained in is smooth irreducible of dimension 5. If , we prove that is isomorphic to the blow-up of , where is a plane smooth quartic. If , an open set of can be described as a quotient with respect to the action of a semisimple group in terms of monads.
@article{BUMI_2009_9_2_1_71_0, author = {Maria Chiara Brambilla and Daniele Faenzi}, title = {Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su variet\`a di Fano della serie principale}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {71-91}, zbl = {1180.14044}, mrnumber = {2493645}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_71_0} }
Brambilla, Maria Chiara; Faenzi, Daniele. Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 71-91. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_71_0/
[AK80] Compactifying the Picard scheme, Adv. in Math. 35, no. 1 (1980), 50-112. | MR 555258 | Zbl 0427.14015
- ,[AC00] Vector bundles on Fano 3-folds without intermediate cohomology, Comm. Algebra, 28, no. 8 (2000), 3899-3911. | MR 1767596 | Zbl 1004.14010
- ,[AF06] Vector bundles with no intermediate cohomology on Fano threefolds of type , Pacific J. Math., 225, no. 2 (2006), 201-220. | MR 2233732 | Zbl 1123.14025
- ,[AHDM78] Construction of instantons, Phys. Lett. A, 65, no. 3 (1978), 185-187. | MR 598562 | Zbl 0424.14004
- - - ,[BH78] Monads and moduli of vector bundles, Manuscripta Math. 25, no. 4 (1978), 323-347. | MR 509589 | Zbl 0395.14007
- ,[BF07a] Vector bundles on Fano threefolds of genus 7 and Brill-Noether loci, Preprint, 2007. | MR 3189780 | Zbl 1300.14040
- ,[BF08a] Moduli spaces of rank 2 ACM bundles on prime Fano threefolds, Arxiv preprint, http://arxiv.org/abs/ 0806.2265, 2008. | MR 2785867 | Zbl 1223.14047
- ,[BF08b] Rank 2 ACM bundles with trivial determinant on Fano threefolds of genus 7, Preprint, 2008. | MR 2785867 | Zbl 1223.14047
- ,[BF08c] Rank 2 stable sheaves with odd determinant on Fano threefolds of genus 9, Preprint, 2008. | Zbl 1286.14059
- ,[BGS87] Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., 88, no. 1 (1987), 165-182. | MR 877011
- - ,[CDH05] Gorenstein liaison and ACM sheaves, J. Reine Angew. Math., 584 (2005), 149-171. | MR 2155088
- - ,[CH04] Gorenstein biliaison and ACM sheaves, J. Algebra, 278, no. 1 (2004), 314-341. | MR 2068080
- ,[Dru00] Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern , et sur la cubique de , Internat. Math. Res. Notices, no. 19 (2000), 985-1004. | MR 1792346
,[EH88] The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann., 280, no. 2 (1988), 347-352. | MR 929541 | Zbl 0616.13011
- ,[Fae07] Bundles over Fano threefolds of type , Ann. Mat. Pura Appl. (4) 186, no. 1 (2007), 1-24. | MR 2263329 | Zbl 1232.14025
,[Fan37] Sulle varietà a tre dimensioni a curve-sezioni canoniche, Mem. R. Acad. D'Italia, 8, (1937), 23-64. | Zbl 0015.37201
,[GLN06] On prime Fano threefolds of genus 9, Internat. J. Math., 17, no. 3 (2006), 253-261. | MR 2215149 | Zbl 1094.14027
- - ,[Gor90] Exceptional objects and mutations in derived categories, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 57-73. | MR 1074783
,[Har77] 52. | MR 463157
, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No.[HL97] E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. | MR 1450870 | Zbl 0872.14002
- , The geometry of moduli spaces of sheaves, Aspects of Mathematics,[Hor64] Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. | MR 169877 | Zbl 0126.16801
,[Ili03] The -Grassmannian and duality for prime Fano threefolds of genus 9, Manuscripta Math., 112, no. 1 (2003), 29-53. | MR 2005929 | Zbl 1078.14528
,[IM06] Prime Fano Threefolds and Integrable Systems, Available at http://www.arxiv.org/abs/math.AG/0606211, 2006. | MR 2341908 | Zbl 1136.14026
- ,[IM07] Pfaffian lines and vector bundles on Fano threefolds of genus 8, J. Algebraic Geom., 16, no. 3 (2007), 499-530. | MR 2306278 | Zbl 1123.14026
- ,[IM00] The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math., 5 (2000), 23-47 (electronic). | MR 1739270 | Zbl 0938.14021
- ,[IM04a] Elliptic curves and rank-2 vector bundles on the prime Fano threefold of genus 7, Adv. Geom., 4, no. 3 (2004), 287-318. | MR 2071808 | Zbl 1074.14039
- ,[IM04b] Parametrization of for a Fano 3-fold of Genus 7 by Moduli of Vector Bundles, Available at http://www.arxiv.org/abs/math.AG/0403122, 2004. | MR 2372725 | Zbl 1074.14039
- ,[IR05] Geometry of the Lagrangian Gras- smannian with applications to Brill-Noether loci, Michigan Math. J. 53, no. 2 (2005), 383-417. | MR 2152707 | Zbl 1084.14042
- ,[IP99] Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1-247. | MR 1668579
- ,[Isk77] Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41, no. 3 (1977), 516-562, 717. | MR 463151
,[Isk78] Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat., 42, no. 3 (1978), 506-549, English translation in Math. U.S.S.R. Izvestija, 12, no. 3 (1978), 469-506 (translated by Miles Reid). | MR 503430
,[KnoÈ87] Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math.88, no. 1 (1987), 153-164. | MR 877010
,[Kuz05] Derived categories of the Fano threefolds , Mat. Zametki, 78, no. 4 (2005), 579-594, English translation in Math. Notes, 78, no. 3-4 (2005), 537-550. | MR 2226730
,[Kuz06] Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat., 70, no. 3 (2006), 23-128, Available at http://www.arxiv.org/abs/math.AG/0503700. | MR 2238172 | Zbl 1133.14016
,[Mad02] ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roumaine Math. Pures Appl.47, no. 2 (2002), 211-222 (2003). | MR 1979043 | Zbl 1051.14050
,[Mer01] Fibrés stables de pente 2, Bull. London Math. Soc.33, no. 5 (2001), 535-542. | MR 1844550
,[MU83] Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, 490-518. | MR 726439
- ,[Muk88] Curves, surfaces and Fano 3-folds of genus , Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, 357-377. | MR 977768
,[Muk89] Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A., 86, no. 9 (1989), 3000-3002. | MR 995400 | Zbl 0679.14020
,[Muk95] Curves and symmetric spaces. I, Amer. J. Math., 117, no. 6 (1995), 1627-1644. | MR 1363081 | Zbl 0871.14025
,[Ott89] Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (4) 155 (1989), 317-341. | MR 1042842 | Zbl 0718.14010
,[Pro90] Exotic Fano varieties, Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 3 (1990), 34-37, 111. | MR 1064296
,[Tan92] Some results on the existence of rank two special stable vector bundles, Manuscripta Math.75, no. 4 (1992), 365-373. | MR 1168174 | Zbl 0766.14026
,[TiB91a] Brill-Noether theory for stable vector bundles, Duke Math. J.62, no. 2 (1991), 385-400. | MR 1104529 | Zbl 0739.14006
,[TiB91b] Brill-Noether theory for vector bundles of rank 2, Tohoku Math. J., (2) 43, no. 1 (1991), 123-126. | MR 1088719 | Zbl 0702.14009
,