An Artificial Viscosity Approach to Quasistatic Crack Growth
Toader, Rodica ; Zanini, Chiara
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 1-35 / Harvested from Biblioteca Digitale Italiana di Matematica

We introduce a new model of irreversible quasistatic crack growth in which the evolution of cracks is the limit of a suitably modified ϵ-gradient flow of the energy functional, as the "viscosity" parameter ϵ tends to zero.

Publié le : 2009-02-01
@article{BUMI_2009_9_2_1_1_0,
     author = {Rodica Toader and Chiara Zanini},
     title = {An Artificial Viscosity Approach to Quasistatic Crack Growth},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {1-35},
     zbl = {1180.35521},
     mrnumber = {2493642},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_1_0}
}
Toader, Rodica; Zanini, Chiara. An Artificial Viscosity Approach to Quasistatic Crack Growth. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 1-35. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_1_0/

[1] Casado-Diaz, J. - Dal Maso, G., A simplified model for the evolution of a fracture in a membrane, Preprint (2000). | Zbl 0959.49014

[2] Chambolle, A., A density result in two-dimensional linearized elasticity, and applications. Arch. Rational Mech. Anal., 167 (2003), 211-233. | MR 1978582 | Zbl 1030.74007

[3] Dal Maso, G., Francfort, G.A. AND Toader, R., Quasistatic Crack Growth in Nonlinear Elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225. | MR 2186036 | Zbl 1064.74150

[4] Dal Maso, G. - Toader, R., A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Rational Mech. Anal., 162 (2002), 101-135. | MR 1897378 | Zbl 1042.74002

[5] Dal Maso, G. - Toader, R., A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Methods Appl. Sci., 12 (2002), 1773-1799. | MR 1946723 | Zbl 1205.74149

[6] Deimling, K., Ordinary Differential Equations in Banach Spaces. Lect. Notes Math.596, Springer-Verlag, Berlin-New York, 1977. | MR 463601 | Zbl 0361.34050

[7] Francfort, G.A. - Larsen, C.J., Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math., 56 (2003), 1465-1500. | MR 1988896 | Zbl 1068.74056

[8] Francfort, G. A. - Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342. | MR 1633984 | Zbl 0966.74060

[9] Friedman, A. - Hu, B. - Velazquez, J. J. L., The evolution of stress intensity factors in the propagation of two dimensional cracks, European J. Appl. Math., 11 (2000), 453-471. | MR 1799921 | Zbl 0969.74056

[10] Griffith, A. A., The Phenomena of Rupture and Flow in Solids, Philos. Trans. R. Soc. London Ser. A, 221 (1920), 163-198.

[11] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985. | MR 775683 | Zbl 0695.35060

[12] Grisvard, P., Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 22. Masson, Paris; Springer-Verlag, Berlin, 1992. | MR 1173209

[13] Hale, J., Ordinary Differential Equations, Pure and Applied Mathematics, XXI, Krieger, Florida, 1980. | MR 587488

[14] Knees, D. - Mielke, A., Energy release rate for cracks in finite-strain elasticity. Math. Methods Applied Sciences, 31 (2008), 501-528. | MR 2394124 | Zbl 1132.74038

[15] Krantz, S. G. - Parks, H. R., The Implicit Function Theorem. History, theory and applications. Birkhäuser, Boston, 2002. | MR 1894435 | Zbl 1012.58003

[16] Mielke, A., Evolution of Rate-Independent Systems, Handbook of Differential Equations, Evolutionary Equations, v. 2, C.M. Dafermos, E. Feireisl (eds.) 461-559 Elsevier, Amsterdam, 2005. | MR 2549367 | Zbl 1120.47062

[17] Zanini, C., Variational Techniques for Quasistatic Evolutionary Models, PhD Thesis, 2006, see http://digitallibrary.sissa.it/handle/1963/1874