Complex Structures and Conformal Geometry
Salamon, Simon
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 199-224 / Harvested from Biblioteca Digitale Italiana di Matematica

A characterization of certain complex structures on conformally-flat domains in real dimension 4 is carried out in the context of Hermitian geometry and twistor spaces. The presentation is motivated by some classical surface theory, whilst the problem itself leads to a refined classification of quadrics in complex projective 3-space. The main results are sandwiched between general facts in real dimension 2n and some concluding examples in real dimension 6.

Publié le : 2009-02-01
@article{BUMI_2009_9_2_1_199_0,
     author = {Simon Salamon},
     title = {Complex Structures and Conformal Geometry},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {199-224},
     zbl = {1182.53043},
     mrnumber = {2493651},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_199_0}
}
Salamon, Simon. Complex Structures and Conformal Geometry. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 199-224. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_199_0/

[1] Apostolov, V. - Gauduchon, P. - Grantcharov, G., Bi-Hermitian structures on complex surfaces, Proc. London Math. Soc. (3), 79, 2 (1999), 414-428. | MR 1702248 | Zbl 1035.53061

[2] Apostolov, V. - Grantcharov, G. - Ivanov, S., Orthogonal complex structures on certain Riemannian 6-manifolds, Differ. Geom. Appl., 11 (1999), 279-296. | MR 1726543 | Zbl 0964.53032

[3] Apostolov, V. - Gualtieri, M., Generalized Kähler manifolds, commuting complex structures, and split tangent bundles, Comm. Math. Phys., 271 (2007), 561-575. | MR 2287917 | Zbl 1135.53018

[4] Atiyah, M. F. - Hitchin, N. J. - Singer, I. M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, 362, 1711 (1978), 425-461. | MR 506229 | Zbl 0389.53011

[5] Atiyah, M. F. - Ward, R. S., Instantons and algebraic geometry, Comm. Math. Phys., 55 (1977), 117-124. | MR 494098 | Zbl 0362.14004

[6] Baird, P. - Wood, J. C., Harmonic Morphisms between Riemannian Manifolds, volume 29 of London Mathematical Society Monographs, Oxford University Press (Oxford, 2003). | MR 2044031 | Zbl 1055.53049

[7] Bérard Bergery, L. - Ochiai, T., On some generalizations of the construction of twistor spaces. In Global Riemannian geometry (Durham, 1983) (Ellis Horwood, Chichester, 1984), 52-59. | MR 757205

[8] Besse, A. L., Einstein Manifolds, Springer, Berlin, 1987. | MR 867684

[9] Bishop, E., Conditions for the analyticity of certain sets, Michigan Math. J., 11 (1964), 289-304. | MR 168801 | Zbl 0143.30302

[10] Borisov, L. - Salamon, S. - Viaclovsky, J., Orthogonal complex structures in Euclidean spaces, In preparation.

[11] Bryant, R. L., Submanifolds and special structures on the octonians, J. Differ. Geom., 17 (1982), 185-232. | MR 664494 | Zbl 0526.53055

[12] Bryant, R. L., Lie groups and twistor spaces, Duke Math. J., 52 (1985), 223-261. | MR 791300 | Zbl 0582.58011

[13] Burstall, F. E. - Rawnsley, J. H., Twistor Theory for Riemannian Symmetric Spaces, Lecture Notes Math. 1424 (Springer-Verlag Berlin, 1990). | MR 1059054 | Zbl 0699.53059

[14] Calabi, E., Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87 (1958), 407-438. | MR 130698 | Zbl 0080.37601

[15] Cartan, É., The Theory of Spinors, Dover Publications Inc. (New York, 1981). With a foreword by Raymond Streater, A reprint of the 1966 English translation, Dover Books on Advanced Mathematics. | MR 631850 | Zbl 0489.53010

[16] Chern, S. S., An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782. | MR 74856 | Zbl 0066.15402

[17] Donaldson, S. K. - Fine, J., Toric anti-self-dual 4-manifolds via complex geometry, Math. Ann., 336 (2006), 281-309. | MR 2244374 | Zbl 1114.53044

[18] Eells, J. - Salamon, S., Twistorial constructions of harmonic maps of surfaces into four-manifolds, Ann. Sc. Norm. Sup. Pisa, 12 (1985), 589-640. | MR 848842 | Zbl 0627.58019

[19] Evans, L. C. - Gariepy, R. F., Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992). | MR 1158660 | Zbl 0804.28001

[20] Fujiki, A. - Pontecorvo, M., On Hermitian geometry of complex surfaces. In Complex, contact and symmetric manifolds, Progr. Math. 234 (Birkhäuser, Boston, 2005), 153-163. | MR 2105147 | Zbl 1085.53065

[21] Grassberger, P., On the Hausdorff Dimension of Fractal Attractors, J. Stat. Phys, 26 (1981), 173-179. | MR 643707

[22] Gray, A. - Abbena, E. - Salamon, S., Modern Differential Geometry of Curves and Surfaces, with Mathematica, CRC Press, Taylor and Francis (2006). | MR 2253203 | Zbl 1123.53001

[23] Gualtieri, M., Generalized complex geometry. arXiv:math/0703298. | MR 2811595 | Zbl 1235.32020

[24] Hilborn, R., Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers, Oxford University Press (New York, 1994). | MR 1263025

[25] Hitchin, N., Bihermitian metrics on Del Pezzo surfaces, J. Symplectic Geom., 5, 1 (2007), 1-8. | MR 2371181 | Zbl 1187.32017

[26] Joyce, D., The hypercomplex quotient and the quaternionic quotient, Math. Ann., 290 (1991), 323-340. | MR 1109637 | Zbl 0723.53043

[27] Kobak, P., Explicit doubly-Hermitian metrics, Differential Geom. Appl., 10 (1999), 179-185. | MR 1669453 | Zbl 0947.53011

[28] Lebrun, C. - Poon, Y. S., Self-dual manifolds with symmetry. In Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (Providence, RI, 1993), 365-377. | MR 1216553 | Zbl 0790.53037

[29] Lebrun, C. R., Explicit self-dual metrics on 2##2, J. Differ. Geom., 34 (1991), 223-253. | MR 1114461 | Zbl 0725.53067

[30] Milnor, J., On the concept of attractor, Commun. Math. Phys., 99 (1985), 177-195. | MR 790735 | Zbl 0595.58028

[31] Mumford, D., Algebraic Geometry. I, Classics in Mathematics (Springer-Verlag, Berlin, 1995). Complex projective varieties. | MR 1344216

[32] Newlander, A. - Nirenberg, L., Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (2) (1957), 391-404. | MR 88770 | Zbl 0079.16102

[33] O'Brian, N. R. - Rawnsley, J. R., Twistor spaces, Ann. Global Anal. Geom., 3 (1985), 29-58. | MR 812312

[34] Pontecorvo, M., Uniformization of conformally flat Hermitian surfaces, Differential Geom. Appl., 2, 3 (1992), 295-305. | MR 1245329 | Zbl 0766.53052

[35] Poon, Y. S., Compact self-dual manifolds with positive scalar curvature, J. Differ. Geom., 24 (1986), 97-132. | MR 857378 | Zbl 0583.53054

[36] Salamon, S. - Viaclovsky, J., Orthogonal complex structures on domains of 4, to appear in Math. Ann. | MR 2471604 | Zbl 1167.32017

[37] Salamon, S. M., Orthogonal complex structures. In Differential geometry and applications (Brno, 1995) (Masaryk Univ., Brno, 1996), 103-117. | MR 1406329 | Zbl 0864.53051

[38] Salamon, S. M., Hermitian geometry. In Invitations to Geometry and Topology, Oxf. Grad. Texts Math.7, (Oxford University Press, 2002), 233-291. | MR 1967751

[39] Shiffman, B., On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968), 111-120. | MR 224865 | Zbl 0165.40503

[40] Slupinski, M. J., The twistor space of the conformal six sphere and vector bundles on quadrics, J. Geom. Phys., 19 (1996), 246-266. | MR 1397410 | Zbl 0856.32020

[41] Tricerri, F. - Vanhecke, L., Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), 365-397. | MR 626479 | Zbl 0484.53014

[42] Wood, J. C., Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Internat. J. Math., 3, 3 (1992), 415-439. | MR 1163734 | Zbl 0763.53051