We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space whenever the exponent function satisfies log-Hölder continuity conditions. We include the case where assumes the value infinity. The same proof also shows that the fractional maximal operator , , maps into , where .
@article{BUMI_2009_9_2_1_151_0, author = {D. Cruz-Uribe and L. Diening and A. Fiorenza}, title = {A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {151-173}, zbl = {1207.42011}, mrnumber = {2493649}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_151_0} }
Cruz-Uribe, D.; Diening, L.; Fiorenza, A. A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 151-173. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_151_0/
[1] 129 of Pure and Applied Mathematics. Academic Press Inc. (Boston, MA, 1988). | MR 928802 | Zbl 0647.46057
- , Interpolation of operators, volume[2] The fractional maximal operator and fractional integrals on variable spaces. Revista Math. Iberoamericana, 23, 3 (2007), 743-770. | MR 2414490 | Zbl 1213.42063
- - ,[3] New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J., 7, 1 (2000), 33-42. | MR 1768043 | Zbl 0987.42019
,[4] The maximal function on variable spaces. Ann. Acad. Sci. Fenn. Math., 28, 1 (2003), 223-238. See errata [5]. | MR 1976842 | Zbl 1037.42023
- - ,[5] Corrections to: "The maximal function on variable spaces" [Ann. Acad. Sci. Fenn. Math., 28, no. 1 (2003), 223- 238]. Ann. Acad. Sci. Fenn. Math., 29, 1 (2004), 247-249. | MR 2041952 | Zbl 1037.42023
- - ,[6] Maximal function on generalized Lebesgue spaces . Math. Inequal. Appl., 7, 2 (2004), 245-253. | MR 2057643 | Zbl 1071.42014
,[7] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129, 8 (2005), 657-700. | MR 2166733 | Zbl 1096.46013
,[8]
, Habilitation, Universität Freiburg, 2007.[9] Maximal functions in variable exponent spaces: limiting cases of the exponent. Preprint, 2007. | MR 2553809
- - - - ,[10] Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings ( and (eds.); Milovy, Czech Republic, pages 38-58. Academy of Sciences of the Czech Republic (Prague, 2005).
- - ,[11] 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. | MR 1800316
, Fourier analysis, volume[12] On the spaces and . J. Math. Anal. Appl., 263, 2 (2001), 424-446. | MR 1866056 | Zbl 1028.46041
- ,[13] 116 of North-Holland Mathematics Studies (North-Holland Publishing Co., Amsterdam, 1985). | MR 807149 | Zbl 0578.46046
- , Weighted norm inequalities and related topics, volume[14] On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen, 22, 4 (2003), 899-910. | MR 2036935 | Zbl 1040.42013
- ,[15] On spaces and . Czechoslovak Math. J., 41, 116 (4) (1991), 592-618. | MR 1134951
- ,[16] Some remarks on the Hardy-Littlewood maximal function on variable spaces. Math. Z., 251, 3 (2005), 509-521. | MR 2190341 | Zbl 1092.42009
,[17] Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 192 (1974), 261-274. | MR 340523 | Zbl 0289.26010
- ,[18] 1034 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1983). | MR 724434 | Zbl 0557.46020
, Orlicz spaces and modular spaces, volume[19] Hardy-Littlewood maximal operator on . Math. Inequal. Appl., 7, 2 (2004), 255-265. | MR 2057644 | Zbl 1059.42016
,[20] A note on maximal operator on and . J. Funct. Spaces Appl., 5, 1 (2007), 49-88. | MR 2296013 | Zbl 1143.46011
,[21] An example of a space on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19, 4 (2001), 369-371. | MR 1876258 | Zbl 1003.42013
- ,[22] On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct., 16, 5-6 (2005), 461-482. | MR 2138062 | Zbl 1069.47056
,