Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness
Altomare, Francesco
Bollettino dell'Unione Matematica Italiana, Tome 2 (2009), p. 135-150 / Harvested from Biblioteca Digitale Italiana di Matematica

Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.

Publié le : 2009-02-01
@article{BUMI_2009_9_2_1_135_0,
     author = {Francesco Altomare},
     title = {Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {135-150},
     zbl = {1181.41033},
     mrnumber = {2493648},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_135_0}
}
Altomare, Francesco. Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 135-150. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_135_0/

[1] Altomare, F., Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 16, n. 2 (1989), 259-279. | MR 1041898 | Zbl 0706.47022

[2] Altomare, F. - Campiti, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994. | MR 1292247 | Zbl 0924.41001

[3] Altomare, F. - Leonessa, V. - Rasa, I., On Bernstein-Schnabl operators on the unit interval, J. for Anal. and its Appl., 27, 3 (2008), 353-379. | MR 2411481 | Zbl 1140.41304

[4] Amel'Kovic, V. G., A theorem converse to a theorem of Voronovskaja type, Teor. Funkcii Funkcional Anal. i Prilozen, 2 (1966), 67-74. | MR 203329

[5] W. Arendt - A. Grabosch - G. Greiner - U. Groh - H. P. Lotz - U. Moustakas, R. Nagel (ed.) - Neubrander, F. - Schlotterbeck, U., One-parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184 (Springer-Verlag, Berlin, 1986). | MR 839450

[6] Berens, H. - Lorentz, G. G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. Journal, 21, no. 8 (1972), 693-708. | MR 296579 | Zbl 0262.41006

[7] Butzer, P. L. - Berens, H., Semi-groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften, 145 (Springer-Verlag, Berlin, 1967). | MR 230022 | Zbl 0164.43702

[8] Clément, Ph. - Timmermans, C. A., On C0-semigroups generated by differential operators satisfying Wentcel's boundary conditions, Indag. Math., 89 (1986), 379-387. | MR 869754 | Zbl 0618.47035

[9] De Leeuw, K., On the degree of approximation by Bernstein polynomials, J. Analyse Math., 7 (1959), 89-104. | MR 113075 | Zbl 0094.10601

[10] De Vore, R. A. - Lorentz, G. G., Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303 (Springer-Verlag, Berlin, 1993). | MR 1261635

[11] K. -Engel, J. - Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194 (Springer, New York-Berlin, 2000). | MR 1721989 | Zbl 0952.47036

[12] Grossman, M. W., Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46. | MR 336171 | Zbl 0269.41019

[13] Lorentz, G. G., Approximation of Functions, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. | MR 917270 | Zbl 0643.41001

[14] Lorentz, G. G., Bernstein Polynomials, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986. | MR 864976

[15] Micchelli, C. A., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. | MR 344757 | Zbl 0258.41012

[16] Rasa, I., Generalized Bernstein operators and convex functions, Studia Univ. "Babeş-Bolyai", Math., 33, no. 2 (1988), 36-39. | MR 1004816 | Zbl 0686.41020

[17] Schnabl, R., Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82. | MR 236586

[18] Taira, K., Diffusion Processes and Partial Differential Equations, Academic Press, Boston-San Diego-London-Tokyo, 1988. | MR 954835 | Zbl 0652.35003

[19] Voronovskaja, E. V., The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk. SSSR, A (1932), 79-85. | Zbl 58.1062.04