Of concern are Bernstein-Schnabl operators associated with a continuous selection of Borel measures on the unit interval. With respect to these sequences of positive linear operators we determine the classes of all continuous functions verifying a pointwise asymptotic formula or a uniform one. Our methods are essentially based on a general characterization of the domains of Feller semigroups in terms of asymptotic formulae and on the determination of both the saturation class of Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.
@article{BUMI_2009_9_2_1_135_0, author = {Francesco Altomare}, title = {Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {135-150}, zbl = {1181.41033}, mrnumber = {2493648}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_135_0} }
Altomare, Francesco. Asymptotic Formulae for Bernstein-Schnabl Operators and Smoothness. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 135-150. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_135_0/
[1] Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 16, n. 2 (1989), 259-279. | MR 1041898 | Zbl 0706.47022
,[2] 17, Walter de Gruyter, Berlin-New York, 1994. | MR 1292247 | Zbl 0924.41001
- , Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics,[3] On Bernstein-Schnabl operators on the unit interval, J. for Anal. and its Appl., 27, 3 (2008), 353-379. | MR 2411481 | Zbl 1140.41304
- - ,[4] A theorem converse to a theorem of Voronovskaja type, Teor. Funkcii Funkcional Anal. i Prilozen, 2 (1966), 67-74. | MR 203329
,[5] 1184 (Springer-Verlag, Berlin, 1986). | MR 839450
- - - - - , (ed.) - - , One-parameter Semigroups of Positive Operators, Lecture Notes in Math.,[6] Inverse theorems for Bernstein polynomials, Indiana Univ. Math. Journal, 21, no. 8 (1972), 693-708. | MR 296579 | Zbl 0262.41006
- ,[7] 145 (Springer-Verlag, Berlin, 1967). | MR 230022 | Zbl 0164.43702
- , Semi-groups of Operators and Approximation, Die Grundlehren der mathematischen Wissenschaften,[8] On -semigroups generated by differential operators satisfying Wentcel's boundary conditions, Indag. Math., 89 (1986), 379-387. | MR 869754 | Zbl 0618.47035
- ,[9] On the degree of approximation by Bernstein polynomials, J. Analyse Math., 7 (1959), 89-104. | MR 113075 | Zbl 0094.10601
,[10] 303 (Springer-Verlag, Berlin, 1993). | MR 1261635
- , Constructive Approximation, Grundlehren der mathematischen Wissenschaften,[11] K. -194 (Springer, New York-Berlin, 2000). | MR 1721989 | Zbl 0952.47036
- , One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics,[12] Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl., 45 (1974), 43-46. | MR 336171 | Zbl 0269.41019
,[13] | MR 917270 | Zbl 0643.41001
, Approximation of Functions, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986.[14] | MR 864976
, Bernstein Polynomials, 2nd Ed., Chelsea Publ. Comp., New York, N.Y., 1986.[15] The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8 (1973), 1-18. | MR 344757 | Zbl 0258.41012
,[16] Generalized Bernstein operators and convex functions, Studia Univ. "Babeş-Bolyai", Math., 33, no. 2 (1988), 36-39. | MR 1004816 | Zbl 0686.41020
,[17] Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82. | MR 236586
,[18] | MR 954835 | Zbl 0652.35003
, Diffusion Processes and Partial Differential Equations, Academic Press, Boston-San Diego-London-Tokyo, 1988.[19] The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk. SSSR, A (1932), 79-85. | Zbl 58.1062.04
,