We prove the existence of rotating solitary waves (vortices) for the nonlinear Klein-Gordon equation with nonnegative potential, by finding nonnegative cylindrical solutions to the standing equation where , , and . The nonnegativity of the potential makes the equation suitable for physical models and guarantees the wellposedness of the corresponding Cauchy problem, but it prevents the use of standard arguments in providing the functional associated to with bounded Palais-Smale sequences.
@article{BUMI_2009_9_2_1_105_0, author = {Marino Badiale and Vieri Benci and Sergio Rolando}, title = {Three Dimensional Vortices in the Nonlinear Wave Equation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {105-134}, zbl = {1178.35263}, mrnumber = {2493647}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2009_9_2_1_105_0} }
Badiale, Marino; Benci, Vieri; Rolando, Sergio. Three Dimensional Vortices in the Nonlinear Wave Equation. Bollettino dell'Unione Matematica Italiana, Tome 2 (2009) pp. 105-134. http://gdmltest.u-ga.fr/item/BUMI_2009_9_2_1_105_0/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. | MR 370183 | Zbl 0273.49063
- ,[2] Existence of steady vortex rings in an ideal fluid, Arch. Rational Mech. Anal., 108 (1989), 97-109. | MR 1011553 | Zbl 0694.76012
- ,[3] Solitary waves: physical aspects and mathematical results, Rend. Sem. Math. Univ. Pol. Torino, 62 (2004), 107-154. | MR 2131956 | Zbl 1120.37045
- - ,[4] A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381. | MR 2314102 | Zbl 1149.35033
- - ,[5] Vortices with prescribed norm in the nonlinear wave equation, preprint 2008. | MR 2454877 | Zbl 1172.35064
- ,[6] A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal., 163 (2002), 259-293. | MR 1918928 | Zbl 1010.35041
- ,[7] The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations, 184 (2002), 109-138. | MR 1929149
- ,[8] Existence of 3D-vortices in abelian gauge theories, Mediterr. J. Math., 3 (2006), 409-418. | MR 2274734 | Zbl 1167.35351
- ,[9] Solitary waves in the nonlinear wave equation and in gauge theories, J. Fixed Point Theory Appl., 1 (2007), 61-86. | MR 2282344 | Zbl 1122.35121
- ,[10] Vortices in abelian gauge theories, work in progress. | Zbl 1173.81013
- ,[11] Solitary waves with non vanishing angular momentum, Adv. Nonlinear Stud., 3 (2003), 151-160. | MR 1955598 | Zbl 1030.35051
- ,[12] Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. | MR 695535 | Zbl 0533.35029
- ,[13] On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Analysis, 9 (1972), 249-261. | MR 299966 | Zbl 0224.35061
,[14] Spinning solitons of a modified non-linear Schroedinger equation, Phys. Rev. D, 69, 087701. | MR 2094947
- - ,[15] Action minima among solutions to a class of euclidean scalar field equation, Comm. Math. Phys, 58 (1978), 211-221. | MR 468913
- - ,[16] Q-Balls, Nucl. Phys. B, 262 (1985), 263-283. | MR 819656
,[17] Spinning solitons in cubic-quintic nonlinear media, Pramana, 57 (2001), 1041- 1059.
- - ,[18] On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Integral Eq., 16 (2003), 349-384. | MR 1947957
,[19] Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5 (1964), 1252-1254. | MR 174304
,[20] | MR 1239172 | Zbl 0786.35001
, Introduction to regularity theory for nonlinear elliptic systems, Birkhäuser Verlag, 1993.[21] Global nontopological vortices, Phys. Rev. D, 47 (1985), 5434-5443.
- - ,[22] Supersymmetric Q-balls as dark matter, Phys. Lett. B, 418 (1998), 46-54.
- ,[23] 33, Birkhäuser, 1997.
- , Entire solutions of semilinear elliptic equations, PNLDE, vol.[24] Solutions complexes d'équations elliptiques semilinéaires dans , C. R. Acad. Sci. Paris, série I, 302 (1986), 673-676. | MR 847751 | Zbl 0606.35027
,[25] The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30. | MR 547524 | Zbl 0417.58007
,[26] | MR 719693
, Solitons and instantons, North-Holland Physics Publishing, 1987.[27] Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities, J. Math. Phys., 9 (1968), 996-998.
,[28] A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. Henry Poincaré - Analyse non linéaire, 12 (1995), 319-337. | MR 1340267 | Zbl 0837.46025
,[29] Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys., 91 (1983), 313-327. | MR 723756 | Zbl 0539.35067
,[30] Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc., 290 (1985), 701-710. | MR 792821 | Zbl 0617.35072
,[31] Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-172. | MR 454365 | Zbl 0356.35028
,[32] 23, Springer, 1978. | MR 498955
, Nonlinear invariant wave equations, Lecture Notes in Phisics, vol.[33] Existence of spinning solitons in field theory, eprint arXiv:hep-th/ 0401030 (2004).
,[34] Spinning Q-balls, Phys. Rev. D, 66 (2002) 085003.
- ,[35] 24, Birkhäuser, 1996. | MR 1400007
, Minimax theorems, PNLDE, vol.[36] | MR 483954
, Linear and nonlinear waves, John Wiley & Sons, 1974.