We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded -curvatures.
@article{BUMI_2008_9_1_3_881_0, author = {Thiemo Kessel and Tristan Rivi\`ere}, title = {Singular Bundles with Bounded $L^2$-Curvatures}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {881-901}, zbl = {1197.58005}, mrnumber = {2455351}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_881_0} }
Kessel, Thiemo; Rivière, Tristan. Singular Bundles with Bounded $L^2$-Curvatures. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 881-901. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_881_0/
[Be1] The approximation problem for Sobolev maps between two manifolds. Acta Math., 167, no. 3-4 (1991), 153-206. | MR 1120602 | Zbl 0756.46017
,[Be2] A characterization of maps in which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, no. 4 (1990), 269-286. | MR 1067776 | Zbl 0708.58004
,[BCDH] A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. Nematic (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, (1991), 15-23. | MR 1178083 | Zbl 0735.46017
- - - ,[BBC] Relaxed energies for harmonic maps. Variational methods (Paris, 1988), 37-52, Progr. Nonlinear Differential Equations Appl., 4, Birkauser Boston, Boston, MA, 1990. | MR 1205144 | Zbl 0793.58011
- - ,[BCL] Harmonic maps with defects. Comm. Math. Phys., 107, no. 4 (1986), 649-705. | MR 868739 | Zbl 0608.58016
- - ,[DK] The geometry of four-manifolds'. Oxford, (1990). | MR 1079726 | Zbl 0820.57002
- , `[DT] Gauge theory in higher dimensions. The geometric universe (Oxford, 1996), 31-47, Oxford Univ. Press, Oxford, 1998. | MR 1634503 | Zbl 0926.58003
- ,[DV] 37, Birkhauser Boston, Boston, MA, 1983. | MR 728413 | Zbl 0534.53056
, Équation de Yang et Mills, modèles à deux dimensions et généralisation. Progr. Math.,[FrU] 1, Springer, (1991). | MR 1081321
- , Instantons and four-manifolds. MSRI Pub.[GMS] | MR 1645086
- - , Cartesian currents in the calculus of variations I and II. Springer-Verlag, Berlin, 1998.[HL] A remark on mappings of Riemannian manifolds. Manuscripta Math., 56 (1986), 1-10. | MR 846982
- ,[He] | MR 1913803
, Harmonic maps, conservation laws and moving frames. Diderot, (1996).[Is1] Energy estimate, energy gap phenomenon and relaxed energy for Yang-Mills functional. J. Geom. Anal., 8 (1998), 43-64. | MR 1704568 | Zbl 0933.58013
,[Is2] Relaxed Yang-Mills functional over 4 manifolds. Topological Methods in Non Linear Analysis, 6 (1995), 235-253. | MR 1399538 | Zbl 0874.58008
,[KR] Approximation results for singular bundles with bounded -curvatures. in preparation (2008).
- ,[MR] A partial regularity result for a class of stationary Yang-Mills fields in higher dimensions. Rev. Mat. Iberoamericana, 19, no. 1 (2003), 195-219. | MR 1993420
- ,[NR1] Existence of universal connections. Amer. J. Math., 83 (1961), 563-572. | MR 133772 | Zbl 0114.38203
- ,[NR2] Existence of universal connections II. Amer. J. Math., 85 (1963), 223-231. | MR 151923 | Zbl 0117.39002
- ,[Ri1] Everywhere discontinuous harmonic maps into spheres. Acta Math., 175, no. 2 (1995), 197-226. | MR 1368247
,[SaU] The existence of minimal immersions of 2-spheres. Ann. of Math., 113 (1981), 1-24. | MR 604040 | Zbl 0462.58014
- ,[ScU] A regularity theory for harmonic maps. J. Diff. Geom., 17 (1982), 307-335. | MR 664498 | Zbl 0521.58021
- ,[ScU2] Approximation theorems for Sobolev mappings preprint (1984).
- ,[Se] A Direct Method for Minimizing the Yang-Mills Functional over 4-Manifolds, Commun. Math. Phys., 86 (1982), 515-527. | MR 679200 | Zbl 0506.53016
,[Ti] Gauge theory and calibrated geometry I. Ann. of Math. (2) 151, no. 1 (2000), 193-268. | MR 1745014 | Zbl 0957.58013
,[TT] A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc., 17, no. 3 (2004), 557-593 | MR 2053951 | Zbl 1086.53043
- ,[Uh1] Connections with bounds on curvature. Comm. Math. Phys., 83, (1982), 31-42. | MR 648356 | Zbl 0499.58019
,[Uh2] Removable singularities in Yang-Mills fields. Comm. Math. Phys., 83, (1982), 11-29. | MR 648355 | Zbl 0491.58032
,[Uh3] | MR 645753 | Zbl 0481.58016
, Variational problems for gauge fields. Seminar on Differential Geometry, Princeton University Press, 1982.[Wh] Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta. Math., 160 (1988), 1-17. | MR 926523 | Zbl 0647.58016
,