Singular Bundles with Bounded L2-Curvatures
Kessel, Thiemo ; Rivière, Tristan
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 881-901 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded L2-curvatures.

Publié le : 2008-10-01
@article{BUMI_2008_9_1_3_881_0,
     author = {Thiemo Kessel and Tristan Rivi\`ere},
     title = {Singular Bundles with Bounded $L^2$-Curvatures},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {881-901},
     zbl = {1197.58005},
     mrnumber = {2455351},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_881_0}
}
Kessel, Thiemo; Rivière, Tristan. Singular Bundles with Bounded $L^2$-Curvatures. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 881-901. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_881_0/

[Be1] Bethuel, F., The approximation problem for Sobolev maps between two manifolds. Acta Math., 167, no. 3-4 (1991), 153-206. | MR 1120602 | Zbl 0756.46017

[Be2] Bethuel, F., A characterization of maps in H1(B3,S2) which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, no. 4 (1990), 269-286. | MR 1067776 | Zbl 0708.58004

[BCDH] Bethuel, F. - Coron, J. M. - Demengel, F. - Hélein, F., A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. Nematic (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, (1991), 15-23. | MR 1178083 | Zbl 0735.46017

[BBC] Bethuel, F. - Brezis, H. - Coron, J.-M., Relaxed energies for harmonic maps. Variational methods (Paris, 1988), 37-52, Progr. Nonlinear Differential Equations Appl., 4, Birkauser Boston, Boston, MA, 1990. | MR 1205144 | Zbl 0793.58011

[BCL] Brezis, H. - Coron, J.M. - Lieb, E., Harmonic maps with defects. Comm. Math. Phys., 107, no. 4 (1986), 649-705. | MR 868739 | Zbl 0608.58016

[DK] Donaldson, S. K. - Kronheimer, P. B., `The geometry of four-manifolds'. Oxford, (1990). | MR 1079726 | Zbl 0820.57002

[DT] Donaldson, S. K. - Thomas, R. P., Gauge theory in higher dimensions. The geometric universe (Oxford, 1996), 31-47, Oxford Univ. Press, Oxford, 1998. | MR 1634503 | Zbl 0926.58003

[DV] Dubois-Violette, M., Équation de Yang et Mills, modèles σ à deux dimensions et généralisation. Progr. Math., 37, Birkhauser Boston, Boston, MA, 1983. | MR 728413 | Zbl 0534.53056

[FrU] Freed, D. - Uhlenbeck, K., Instantons and four-manifolds. MSRI Pub. 1, Springer, (1991). | MR 1081321

[GMS] Giaquinta, M. - Modica, G. - Souček, J., Cartesian currents in the calculus of variations I and II. Springer-Verlag, Berlin, 1998. | MR 1645086

[HL] Hardt, R. - Lin, F.H., A remark on H1 mappings of Riemannian manifolds. Manuscripta Math., 56 (1986), 1-10. | MR 846982

[He] Hélein, F., Harmonic maps, conservation laws and moving frames. Diderot, (1996). | MR 1913803

[Is1] Isobe, T., Energy estimate, energy gap phenomenon and relaxed energy for Yang-Mills functional. J. Geom. Anal., 8 (1998), 43-64. | MR 1704568 | Zbl 0933.58013

[Is2] Isobe, T., Relaxed Yang-Mills functional over 4 manifolds. Topological Methods in Non Linear Analysis, 6 (1995), 235-253. | MR 1399538 | Zbl 0874.58008

[KR] Kessel, T. - Rivieáre, T., Approximation results for singular bundles with bounded Lp-curvatures. in preparation (2008).

[MR] Meyer, Y. - Rivieáre, T., A partial regularity result for a class of stationary Yang-Mills fields in higher dimensions. Rev. Mat. Iberoamericana, 19, no. 1 (2003), 195-219. | MR 1993420

[NR1] Narasimhan, M. S. - Ramanan, S., Existence of universal connections. Amer. J. Math., 83 (1961), 563-572. | MR 133772 | Zbl 0114.38203

[NR2] Narasimhan, M. S. - Ramanan, S., Existence of universal connections II. Amer. J. Math., 85 (1963), 223-231. | MR 151923 | Zbl 0117.39002

[Ri1] Rivieáre, T., Everywhere discontinuous harmonic maps into spheres. Acta Math., 175, no. 2 (1995), 197-226. | MR 1368247

[SaU] Sacks, J. - Uhlenbeck, K., The existence of minimal immersions of 2-spheres. Ann. of Math., 113 (1981), 1-24. | MR 604040 | Zbl 0462.58014

[ScU] Schoen, R. - Uhlenbeck, K., A regularity theory for harmonic maps. J. Diff. Geom., 17 (1982), 307-335. | MR 664498 | Zbl 0521.58021

[ScU2] Schoen, R. - Uhlenbeck, K., Approximation theorems for Sobolev mappings preprint (1984).

[Se] Sedlacek, S., A Direct Method for Minimizing the Yang-Mills Functional over 4-Manifolds, Commun. Math. Phys., 86 (1982), 515-527. | MR 679200 | Zbl 0506.53016

[Ti] Tian, G., Gauge theory and calibrated geometry I. Ann. of Math. (2) 151, no. 1 (2000), 193-268. | MR 1745014 | Zbl 0957.58013

[TT] Tao, T. - Tian, G., A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc., 17, no. 3 (2004), 557-593 | MR 2053951 | Zbl 1086.53043

[Uh1] Uhlenbeck, K., Connections with Lp bounds on curvature. Comm. Math. Phys., 83, (1982), 31-42. | MR 648356 | Zbl 0499.58019

[Uh2] Uhlenbeck, K., Removable singularities in Yang-Mills fields. Comm. Math. Phys., 83, (1982), 11-29. | MR 648355 | Zbl 0491.58032

[Uh3] Uhlenbeck, K., Variational problems for gauge fields. Seminar on Differential Geometry, Princeton University Press, 1982. | MR 645753 | Zbl 0481.58016

[Wh] White, B., Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta. Math., 160 (1988), 1-17. | MR 926523 | Zbl 0647.58016