In a recent joint paper with L. Székelyhidi we have proposed a new point of view on weak solutions of the Euler equations, describing the motion of an ideal incompressible fluid in with . We give a reformulation of the Euler equations as a differential inclusion, and in this way we obtain transparent proofs of several celebrated results of V. Scheffer and A. Shnirelman concerning the non-uniqueness of weak solutions and the existence of energy-decreasing solutions. Our results are stronger because they work in any dimension and yield bounded velocity and pressure.
@article{BUMI_2008_9_1_3_873_0, author = {Camillo De Lellis}, title = {Le equazioni di Eulero dal punto di vista delle inclusioni differenziali}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {873-879}, zbl = {1191.35212}, mrnumber = {2455350}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_873_0} }
De Lellis, Camillo. Le equazioni di Eulero dal punto di vista delle inclusioni differenziali. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 873-879. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_873_0/
[1] On total differential inclusions, Rend. Sem. Mat. Univ. Padova, 92 (1994), 9-16. | MR 1320474 | Zbl 0821.35158
- ,[2] On the differential inclusion , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 69 (1980), 1-2 (1981), 1-6. | MR 641583 | Zbl 0922.34009
,[3] 103 of Applied Mathematical Sciences, (Springer-Verlag, New York, 1994). | MR 1281384
, Vorticity and turbulence, vol.[4] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math., 178 (1997), 1-37. | MR 1448710 | Zbl 0901.49027
- ,[5] 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 2000). | MR 1763936 | Zbl 0940.35002
, Hyperbolic conservation laws in continuum physics, Vol.[6] The Euler equations as a differential inclusion, Preprint. To appear in Ann. of Math. (2007). | MR 2600877
- ,[7] On admissibility criteria for weak solutions of the Euler equations, Preprint (2008). | MR 2564474
- ,[8] Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, 2 (1985), 383-420. | MR 808729 | Zbl 0606.35052
,[9] Concentrations in regularizations for 2-D incom- pressible flow, Comm. Pure Appl. Math., 40, 3 (1987), 301-345. | MR 882068
- ,[10] | MR 1428905
, Turbulence, Cambridge University Press, Cambridge (1995), The legacy of A. N. Kolmogorov.[11] Deformations with finitely many gradients and stability of quasi-convex hulls, C. R. Acad. Sci. Paris Sér. I Math., 332, 3 (2001), 289-294. | MR 1817378 | Zbl 0989.49013
,[12] Rigidity and Geometry of microstructures, Habilitation Thesis, University of Leipzig (2003). | Zbl 1140.74303
,[13] Studying nonlinear PDE by geometry in matrix space, in Geometric analysis and Nonlinear partial differential equations, and , Eds. (Springer-Verlag, 2003), 347-395. | MR 2008346
- - ,[14] 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press (Cambridge, 2002). | MR 1867882
- , Vorticity and incompressible flow, Vol.[15] Convex integration for Lipschitz mappings and counter-examples to regularity, Ann. of Math. (2), 157 (2003), 715-742. | MR 1983780
- ,[16] An inviscid flow with compact support in space-time, J. Geom. Anal., 3, 4 (1993), 343-401. | MR 1231007 | Zbl 0836.76017
,[17] On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50, 12 (1997), 1261-1286. | MR 1476315 | Zbl 0909.35109
,[18] Weak solutions with decreasing energy of incompressible Euler equations, Comm. Math. Phys., 210, 3 (2000), 541-603. | MR 1777341 | Zbl 1011.35107
,[19] 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006), Local and global analysis. | MR 2233925
, Nonlinear dispersive equations, vol.[20] Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in Math., Pitman (Boston, Mass., 1979), 136-212. | MR 584398
,[21] The compensated compactness method applied to systems of conservation laws. In Systems of nonlinear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel (Dordrecht, 1983), 263-285. | MR 725524
,[22] 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co. (Amsterdam, 1984). Theory and numerical analysis, With an appendix by F. Thomasset. | MR 769654
, Navier-Stokes equations, third ed., vol.