We consider an SPDE in a Hilbert space of the form , and the corresponding transition semigroup . We define the infinitesimal generator of through the Laplace transform of as in [1]. Then we consider the differential operator defined on a suitable set of regular functions. Our main result is that if is a core for , then there exists a unique solution of the martingale problem defined in terms of . Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.
@article{BUMI_2008_9_1_3_839_0,
author = {Giuseppe Da Prato and Luciano Tubaro},
title = {The Martingale Problem in Hilbert Spaces},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {1},
year = {2008},
pages = {839-855},
zbl = {1195.60089},
mrnumber = {2455348},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_839_0}
}
Da Prato, Giuseppe; Tubaro, Luciano. The Martingale Problem in Hilbert Spaces. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 839-855. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_839_0/
[1] , A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum49, no. 3, 349-367, 1994. | MR 1293091 | Zbl 0817.47048
[2] - , Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14, no. 2 (1987), 285-344. | MR 939631 | Zbl 0652.34069
[3] - , Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126 (2001), 685-699. | MR 1864036 | Zbl 0996.47028
[4] - , Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. | MR 1207136
[5] - , Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society, Lecture Notes, 293, Cambridge University Press, 2002. | MR 1985790 | Zbl 1012.35001
[6] , One parameter semigroups, Academic Press, 1980. | MR 591851 | Zbl 0457.47030
[7] , Markov processes and semigroups of operators. Theory of Probability and its Appl., 1, no. 1 (1956), 22-33. | MR 88104
[8] - , Markov processes. Characterization and convergence, Wiley series in probability and mathematical statistics, 1986. | MR 838085
[9] - , Martingale and stationary solutions for stochastic Navier-Stokes equations, Prob. Theory Relat. Fields, 102, (1995), 367-391. | MR 1339739 | Zbl 0831.60072
[10] - , Diffusion semigroups in spaces of continuous functions with mixed topology. J. Diff. Equations, 173, (2001), 17-39. | MR 1836243 | Zbl 1003.60070
[11] , A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67, no. 2 (2003), 205-225. | MR 1987498
[12] , Interacting particle systems. Fundamental Principles of Mathematical Sciences, 276. Springer-Verlag, New York, 1985. | MR 776231 | Zbl 0559.60078
[13] , Stochastic partial differential equations in infinite-dimensional spaces. Scuola Normale Superiore di Pisa, 1988. | MR 982268 | Zbl 0664.60062
[14] - , Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243-325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. | MR 1661767 | Zbl 0938.60047
[15] , On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math., 136, no. 3 (1999), 271-295. | MR 1724248 | Zbl 0955.47024
[16] - , Multidimensional Diffusion Processes, Springer-Verlag, 1979. | MR 532498 | Zbl 0426.60069
[17] , Solutions faibles d'equations aux dérivées partielles stochastiques non linéaires. Thése de Doctorat d'État, 1976. | MR 610619
[18] , Existence et unicité de diffusions á valeurs dans un espace de Hilbert. Ann. Inst. H. Poincaré, 10 (1974), 55-88. | MR 356257 | Zbl 0281.60094
[19] , Functional analysis, Springer-Verlag, 1965. | MR 180824
[20] , A new approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Th. Relat. Fields, 118 (2000), 147-168. | MR 1790079 | Zbl 0963.60059