We consider an SPDE in a Hilbert space of the form , and the corresponding transition semigroup . We define the infinitesimal generator of through the Laplace transform of as in [1]. Then we consider the differential operator defined on a suitable set of regular functions. Our main result is that if is a core for , then there exists a unique solution of the martingale problem defined in terms of . Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.
@article{BUMI_2008_9_1_3_839_0, author = {Giuseppe Da Prato and Luciano Tubaro}, title = {The Martingale Problem in Hilbert Spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {839-855}, zbl = {1195.60089}, mrnumber = {2455348}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_839_0} }
Da Prato, Giuseppe; Tubaro, Luciano. The Martingale Problem in Hilbert Spaces. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 839-855. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_839_0/
[1] A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum49, no. 3, 349-367, 1994. | MR 1293091 | Zbl 0817.47048
,[2] Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14, no. 2 (1987), 285-344. | MR 939631 | Zbl 0652.34069
- ,[3] Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126 (2001), 685-699. | MR 1864036 | Zbl 0996.47028
- ,[4] Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. | MR 1207136
- ,[5] 293, Cambridge University Press, 2002. | MR 1985790 | Zbl 1012.35001
- , Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society, Lecture Notes,[6] | MR 591851 | Zbl 0457.47030
, One parameter semigroups, Academic Press, 1980.[7] Markov processes and semigroups of operators. Theory of Probability and its Appl., 1, no. 1 (1956), 22-33. | MR 88104
,[8] Markov processes. Characterization and convergence, Wiley series in probability and mathematical statistics, 1986. | MR 838085
- ,[9] Martingale and stationary solutions for stochastic Navier-Stokes equations, Prob. Theory Relat. Fields, 102, (1995), 367-391. | MR 1339739 | Zbl 0831.60072
- ,[10] Diffusion semigroups in spaces of continuous functions with mixed topology. J. Diff. Equations, 173, (2001), 17-39. | MR 1836243 | Zbl 1003.60070
- ,[11] A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67, no. 2 (2003), 205-225. | MR 1987498
,[12] 276. Springer-Verlag, New York, 1985. | MR 776231 | Zbl 0559.60078
, Interacting particle systems. Fundamental Principles of Mathematical Sciences,[13] | MR 982268 | Zbl 0664.60062
, Stochastic partial differential equations in infinite-dimensional spaces. Scuola Normale Superiore di Pisa, 1988.[14] Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243-325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. | MR 1661767 | Zbl 0938.60047
- ,[15] On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math., 136, no. 3 (1999), 271-295. | MR 1724248 | Zbl 0955.47024
,[16] | MR 532498 | Zbl 0426.60069
- , Multidimensional Diffusion Processes, Springer-Verlag, 1979.[17] Solutions faibles d'equations aux dérivées partielles stochastiques non linéaires. Thése de Doctorat d'État, 1976. | MR 610619
,[18] Existence et unicité de diffusions á valeurs dans un espace de Hilbert. Ann. Inst. H. Poincaré, 10 (1974), 55-88. | MR 356257 | Zbl 0281.60094
,[19] | MR 180824
, Functional analysis, Springer-Verlag, 1965.[20] A new approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Th. Relat. Fields, 118 (2000), 147-168. | MR 1790079 | Zbl 0963.60059
,