The Martingale Problem in Hilbert Spaces
Da Prato, Giuseppe ; Tubaro, Luciano
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 839-855 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider an SPDE in a Hilbert space H of the form dX(t)=(AX(t)+b(X(t)))dt+σ(X(t))dW(t), X(0)=xH and the corresponding transition semigroup Ptf(x)=𝔼[f(X(t,x))]. We define the infinitesimal generator L¯ of Pt through the Laplace transform of Pt as in [1]. Then we consider the differential operator Lφ=12Tr[σ(x)σ*(x)D2φ]+b(x),Dφ defined on a suitable set V of regular functions. Our main result is that if V is a core for L¯, then there exists a unique solution of the martingale problem defined in terms of L. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.

Publié le : 2008-10-01
@article{BUMI_2008_9_1_3_839_0,
     author = {Giuseppe Da Prato and Luciano Tubaro},
     title = {The Martingale Problem in Hilbert Spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {839-855},
     zbl = {1195.60089},
     mrnumber = {2455348},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_839_0}
}
Da Prato, Giuseppe; Tubaro, Luciano. The Martingale Problem in Hilbert Spaces. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 839-855. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_839_0/

[1] Cerrai, S., A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum49, no. 3, 349-367, 1994. | MR 1293091 | Zbl 0817.47048

[2] Da Prato, G. - Sinestrari, E., Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14, no. 2 (1987), 285-344. | MR 939631 | Zbl 0652.34069

[3] Da Prato, G. - Tubaro, L., Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126 (2001), 685-699. | MR 1864036 | Zbl 0996.47028

[4] Da Prato, G. - Zabczyk, J., Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. | MR 1207136

[5] Da Prato, G. - Zabczyk, J., Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society, Lecture Notes, 293, Cambridge University Press, 2002. | MR 1985790 | Zbl 1012.35001

[6] Davies, E.B., One parameter semigroups, Academic Press, 1980. | MR 591851 | Zbl 0457.47030

[7] Dynkin, E.B., Markov processes and semigroups of operators. Theory of Probability and its Appl., 1, no. 1 (1956), 22-33. | MR 88104

[8] Ethier, S.N. - Kurtz, T., Markov processes. Characterization and convergence, Wiley series in probability and mathematical statistics, 1986. | MR 838085

[9] Flandoli, F. - Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Prob. Theory Relat. Fields, 102, (1995), 367-391. | MR 1339739 | Zbl 0831.60072

[10] Goldys, B. - Kocan, M., Diffusion semigroups in spaces of continuous functions with mixed topology. J. Diff. Equations, 173, (2001), 17-39. | MR 1836243 | Zbl 1003.60070

[11] Kühnemund, F., A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67, no. 2 (2003), 205-225. | MR 1987498

[12] Liggett, T.M., Interacting particle systems. Fundamental Principles of Mathematical Sciences, 276. Springer-Verlag, New York, 1985. | MR 776231 | Zbl 0559.60078

[13] Metivier, M., Stochastic partial differential equations in infinite-dimensional spaces. Scuola Normale Superiore di Pisa, 1988. | MR 982268 | Zbl 0664.60062

[14] Mikulevicius, R. - Rozovskii, B. L., Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243-325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. | MR 1661767 | Zbl 0938.60047

[15] Priola, E., On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math., 136, no. 3 (1999), 271-295. | MR 1724248 | Zbl 0955.47024

[16] Stroock, D. W. - Varadhan, S. R. S., Multidimensional Diffusion Processes, Springer-Verlag, 1979. | MR 532498 | Zbl 0426.60069

[17] Viot, M., Solutions faibles d'equations aux dérivées partielles stochastiques non linéaires. Thése de Doctorat d'État, 1976. | MR 610619

[18] Yor, M., Existence et unicité de diffusions á valeurs dans un espace de Hilbert. Ann. Inst. H. Poincaré, 10 (1974), 55-88. | MR 356257 | Zbl 0281.60094

[19] Yosida, K., Functional analysis, Springer-Verlag, 1965. | MR 180824

[20] Zambotti, L., A new approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Th. Relat. Fields, 118 (2000), 147-168. | MR 1790079 | Zbl 0963.60059