In this paper we aim at describing the hydrodynamic limit of a mixture of chemically reacting gases. Starting from kinetic Boltzmann-type equations, we derive Grad's 13-moments equations for single species. Then, after scaling such equations in terms of a suitable Knudsen number, we apply an asymptotic Chapman-Enskog procedure in order to build up hydrodynamic equations of Navier-Stokes type.
@article{BUMI_2008_9_1_3_805_0, author = {Marzia Bisi}, title = {Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {805-817}, zbl = {1196.35123}, mrnumber = {2455346}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_805_0} }
Bisi, Marzia. Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 805-817. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_805_0/
[1] From reactive Boltzmann equations to reaction-diffusion systems, J. Stat. Phys., 124 (2006), 881-912. | MR 2264629 | Zbl 1134.82323
- ,[2] Grad's distribution functions in the kinetic equations for a chemical reaction, Continuum Mech. Thermodyn., 14 (2002), 207-222. | MR 1896837 | Zbl 0996.76093
- - ,[3] Fluid-dynamic equations for reacting gas mixtures, Appl. Math., 50 (2005), 43-62. | MR 2117695 | Zbl 1099.82015
- - ,[4] Kinetic Modelling of Bimolecular Chemical Reactions, in "Kinetic Methods for Nonconservative and Reacting Systems", ( Ed.), "Quaderni di Matematica" [Mathematics Series], Aracne Editrice, Roma, 16 (2005), 1-143. | MR 2244535 | Zbl 1121.82032
- - ,[5] Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations, Commun. Math. Sci., 4 (2006), 779-798. | MR 2264820 | Zbl 1120.82011
- ,[6] | MR 1744523 | Zbl 0961.76002
, Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, Cambridge University Press, Cambridge (2000).[7] | MR 116537 | Zbl 0063.00782
- , The mathematical theory of non-uniform gases, Springer, New York (1994).[8] Reaction-diffusion equations for interacting particle systems, J. Stat. Phys., 44 (1986), 589-644. | MR 857069 | Zbl 0629.60107
- - ,[9] A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236. | MR 2118066 | Zbl 1060.76100
- - ,[10] | MR 1713516 | Zbl 0956.76003
, Multicomponent Flow Modeling, Birkhäuser, Boston (1999).[11] Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (2000), 197-219. | Zbl 1048.92502
- ,[12] Kinetic theory of a chemically reacting gas with inelastic transitions, Trans. Th. Stat. Phys., 30 (2001), 305-324. | Zbl 1174.82327
- ,[13] Conservative solution methods for extended Boltzmann equations, Riv. Mat. Univ. Parma, (6) 4* (2001), 109-169. | MR 1881106 | Zbl 1005.82023
- ,[14] A review of the kinetic modelings for non-reactive and reactive dense fluids, Riv. Mat. Univ. Parma, (6) 4* (2001), 23-55. | MR 1881104 | Zbl 1009.82018
,[15] On the perturbation of Maxwell distribution function by chemical reactions in a gas, Physica, 15 (1949), 913-932. | Zbl 0037.41003
- ,[16] A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999), 563-573. | MR 1730976
- ,[17] Non-equilibrium contributions to the rate of reaction. Perturbation of the velocity distribution function, J. Chem. Phys., 52 (1970), 4262- 4278. | MR 273964
- ,[18] Asymptotic analysis and reaction-diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures, J. Appl. Math. Phys. (ZAMP), 44 (1993), 812-827. | MR 1241634 | Zbl 0784.76108
- ,[19] Linear and nonlinear diffusion and reaction-diffusion equations from discrete-velocity kinetic models, J. Phys. A: Math. Gen., 26 (1993), 5339-5349. | MR 1248718 | Zbl 0808.60073
,