We extend in a nonlinear context previous results obtained in [8], [9], [10]. In particular we present a precised version of Morawetz type estimates and a uniqueness criterion for solutions to subcritical NLS.
@article{BUMI_2008_9_1_3_791_0, author = {Luis Vega and Nicola Visciglia}, title = {A Uniqueness Result for Solutions to Subcritical NLS}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {791-803}, zbl = {1191.35259}, mrnumber = {2455345}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_791_0} }
Vega, Luis; Visciglia, Nicola. A Uniqueness Result for Solutions to Subcritical NLS. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 791-803. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_791_0/
[1] Some dispersive estimates for Schrödinger equations with repulsive potentials, J. Funct. Anal., vol. 236 (2006), 1-24. | MR 2227127 | Zbl 1293.35090
- - ,[2] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. | MR 2002047
,[3] Local smoothing properties of dispersive equations, J. Amer. Math. Soc., vol. 1 (1988), 413-439. | MR 928265 | Zbl 0667.35061
- ,[4] Endpoint Strichartz estimates, Amer. J. Math., vol. 120 (1998), 955-980. | MR 1646048 | Zbl 0922.35028
- ,[5] Lemmes de moments, de moyenne et de dispersion, C.R.A.S., vol. 314 (1992), 801-806. | MR 1166050 | Zbl 0761.35085
- ,[6] Regularity of solutions to the Schrödinger equation, Duke Math. J., vol. 55 (1987), 699-715. | MR 904948 | Zbl 0631.42010
,[7] Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., vol. 102 (1988), 874-878. | MR 934859 | Zbl 0654.42014
,[8] On the local smoothing for the free Schrödinger equation. Proc. Amer. Math. Soc., vol. 135 (2007), 119-128. | MR 2280200 | Zbl 1173.35107
- ,[9] On the local smmothing for a class of conformally invariant Schrödinger equations. Indiana Univ. Math. J., vol. 56 (2007), 2265-2304. | MR 2360610 | Zbl 1171.35117
- ,[10] Asymptotic lower bounds for a class of Schroedinger equations. Comm. Math. Phys., vol. 279 (2008), 429-453. | MR 2383594 | Zbl 1155.35098
- ,