We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by for some constant that represents a drift towards (or away from) the origin.
@article{BUMI_2008_9_1_3_619_0, author = {Joel M. Cohen and Mauro Pagliacci and Massimo A. Picardello}, title = {Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {619-628}, zbl = {1192.80004}, mrnumber = {2455335}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_619_0} }
Cohen, Joel M.; Pagliacci, Mauro; Picardello, Massimo A. Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 619-628. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_619_0/
[1] Function Series, Catalan Numbers and Random Walks on Trees, Amer. Math. Monthly, 112 (2005), 765-785. | MR 2179858 | Zbl 1168.60012
- - - ,[2] Explicit Solution for the Wave Equation on Homogeneous trees, Adv. Appl. Math., 15 (1994), 390-403. | MR 1304087 | Zbl 0835.05068
, ,[3] 1, 3rd ed., John Wiley and Sons, New York, 1968. | MR 228020 | Zbl 0155.23101
, An Introduction to Probability Theory and its Applications, vol.[4] Local Limits and Harmonic Functions for Non-isotropic Random Walks on Free Groups, Prob. Theory and Related Fields, 71 (1986), 341- 355. | MR 824708 | Zbl 0562.60011
- ,[5] Finite range Random Walks on Free Groups and Homogeneous Trees, Ann. Prob., 21 (1993), 2087-2130. | MR 1245302 | Zbl 0804.60006
,[6] Heat and wave Equations on Homogeneous Trees, Boll. Un. Mat. It. (7) Sez. A, 7 (1993), 37-45. | MR 1215097 | Zbl 0798.05066
,[7] Heat Diffusion on Homogeneous Trees, Adv. Math. 110 (1995), 175-190. | MR 1317614 | Zbl 0834.43010
- ,[8] Spherical Functions and Local Central Limit Theorems on Free Groups, Ann. Mat. Pura Appl., 133 (1983), 177-191. | MR 725025 | Zbl 0527.60011
,[9] Isotropic Random Walks on a Tree, Z. Wahrsch. Verw. Gebiete, 42 (1978), 279-292. | MR 491493 | Zbl 0362.60075
,[10] The Rate of Escape for Anisotropic Random Walks in a Tree, Prob. Theory and Related Fields, 76 (1987), 207-230. | MR 906775 | Zbl 0608.60064
- ,