On the Multivariate Robinson-Schensted Correspondence
Caselli, Fabrizio
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 591-602 / Harvested from Biblioteca Digitale Italiana di Matematica

We show the existence of a multivariate extension of the Robinson-Schensted correspondence. This is inspired by the interpretation of the classical two dimensional case in the invariant theory of (finite) reflection groups.

Publié le : 2008-10-01
@article{BUMI_2008_9_1_3_591_0,
     author = {Fabrizio Caselli},
     title = {On the Multivariate Robinson-Schensted Correspondence},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {591-602},
     zbl = {1187.05082},
     mrnumber = {2455333},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_591_0}
}
Caselli, Fabrizio. On the Multivariate Robinson-Schensted Correspondence. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 591-602. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_591_0/

[1] Adin, R. - Brenti, F. - Roichman, Y., Descent representations and multivariate statistics, Trans. Amer. Math. Soc., 357, no. 8 (2005), 3051-3082. | MR 2135735 | Zbl 1059.05105

[2] Adin, R. - Roichman, Y., The flag major index and group actions on polynomial rings, Europ. J. Combin., 22 (2001), 431-446. | MR 1829737 | Zbl 1058.20031

[3] Bagno, E. - Biagioli, R., Colored-descent representations of complex reflection groups G(r,p,n). Israel J. Math., 160 (2007), 317-347. | MR 2342500 | Zbl 1178.20003

[4] Barcelo, H. - Reiner, V. - Stanton, D., Bimahonian distributions, preprint (arXiv CO/0703479v1), 2007. | MR 2418296

[5] Bessenrodt, C. - Kleshchev, A., On Kronecker products of complex representations of the symmetric and alternating groups, Pacific J. Math., 190, no. 2 (1999), 201-223. | MR 1722888 | Zbl 1009.20013

[6] Biagioli, R. - Caselli, F., Invariant algebras and major indices for classical Weyl groups, Proc. London Math. Soc. (3) 88, no. 3 (2004), 603-631. | MR 2044051 | Zbl 1067.05077

[7] Biagioli, R. - Caselli, F., A descent basis for the coinvariant algebra of type D. J. Algebra, 275, no. 2 (2004), 517-539. | MR 2052623 | Zbl 1079.05518

[8] Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782 | MR 72877 | Zbl 0065.26103

[9] Dvir, Y., On the Kronecker product of Sn characters, 1J. Algebra, 154, no. 1 (1993), 125-140. | MR 1201916 | Zbl 0848.20006

[10] Garsia, A. - Gessel, I., Permutation statistics and partitions, Adv. Math., 31 (1979) 288-305. | MR 532836 | Zbl 0431.05007

[11] Gordon, B., Two theorems on multipartite partitions, J. London Math. Soc., 38 (1963), 459-464. | MR 157959 | Zbl 0119.04105

[12] W.KRAŚKIEWICZ - Weyman, J., Algebra of coinvariants and the action of a Coxeter element, Bayreuth. Math. Schr. no. 63 (2001), 265-284. | MR 1867283 | Zbl 1037.20012

[13] Macmahon, P. A., Combinatory analysis, vol. 1, Cambridge University Press, London, 1915. | MR 141605

[14] Regev, A., On the height of the Kronecker product of Sn characters, Israel J. Math., 42, no. 1-2 (1982), 60-64. | MR 687934 | Zbl 0507.20011

[15] Robinson, G. De B., On the representations of the symmetric group, Amer. J. Math., 60, no. 3 (1938), 745-760. | MR 1507943 | Zbl 64.0070.01

[16] Schensted, C., Longest increasing and decreasing subsequences, Canad. J. Math., 13 (1961), 179-191. | MR 121305 | Zbl 0097.25202

[17] Shephard, G. C. - Todd, J. A., Finite unitary reflection groups, Canadian J. Math., 6 (1954) 274-304. | MR 59914 | Zbl 0055.14305

[18] Stanley, R. P., Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics62, Cambridge University Press, Cambridge, 1999. | MR 1676282

[19] Stembridge, J.R., On the eigenvalues of representations of reflection groups and wreath products. Pacific J. Math., 140, no. 2 (1989), 353-396. | MR 1023791 | Zbl 0641.20011