The Quantitative Isoperimetric Inequality for Planar Convex Domains
Nitsch, Carlo
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 573-589 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove that among all the convex bounded domains in 2 having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.

Publié le : 2008-10-01
@article{BUMI_2008_9_1_3_573_0,
     author = {Carlo Nitsch},
     title = {The Quantitative Isoperimetric Inequality for Planar Convex Domains},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {573-589},
     zbl = {1190.26025},
     mrnumber = {2455332},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_573_0}
}
Nitsch, Carlo. The Quantitative Isoperimetric Inequality for Planar Convex Domains. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 573-589. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_573_0/

[1] Alvino, A. - Ferone, V. - Nitsch, C., The sharp isoperimetric inequality in the plane, preprint (2008). | MR 2735080 | Zbl 1219.52006

[2] Alvino, A. - Lions, P.-L. - Trombetti, G., On optimization problems with prescribed rearrangements, Nonlinear Anal., Theory Methods Appl. 13 (1989), no. 2, 185-220. | MR 979040 | Zbl 0678.49003

[3] Bandle, C., Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Boston, London, Melbourne: Pitman Advanced Publishing Program. X, 228 p., 1980. | MR 572958 | Zbl 0436.35063

[4] Blaschke, W., Kreis und Kugel, Leipzig: Veit u. Co., X u. 169 S. gr. 8°, 1916. | MR 77958

[5] Bonnesen, T., Über eine Verscharfung der isoperimetrischen Ungleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper, Math. Ann.84 (1921), no. 3-4, 216-227. | MR 1512031 | Zbl 48.0591.03

[6] Bonnesen, T., Über das isoperimetrische Defizit ebener Figuren, Math. Ann.91 (1924), no. 3-4, 252-268. | MR 1512192

[7] Bonnesen, T., Les problèmes des isopérimètres et des isépiphanes, 175 p. Paris, Gauthier-Villars (Collection de monographies sur la théorie des fonctions), 1929.

[8] Burago, Yu. D. - Zalgaller, V.A., Geometric inequalities. Transl. from the Russian by A. B. Sossinsky. Transl. from the Russian by A.B. Sossinsky, Grundlehren der Mathematischen Wissenschaften, 285. Berlin etc.: Springer-Verlag. XIV, 331 p., 1988. | MR 936419 | Zbl 0633.53002

[9] Chavel, I., Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics. 145. Cambridge: Cambridge University Press. xii, 268 p. , 2001. | MR 1849187 | Zbl 0988.51019

[10] De Giorgi, E., Sulla proprieta isoperimentrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 5 (1958), 33-44. | MR 98331 | Zbl 0116.07901

[11] Esposito, L. - Fusco, N. - Trombetti, C., A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 4 (2005), no. 4, 691-638. | MR 2207737 | Zbl 1170.52300

[12] Figalli, A. - Maggi, F. - Pratelli, A., A mass transportation approach to quantitative isoperimetric inequalities, preprint (2007). | MR 2672283 | Zbl 1196.49033

[13] Fuglede, B., Stability in the isoperimetric problem for convex or nearly spherical domains in n., Trans. Am. Math. Soc.314 (1989), no. 2, 619-638. | MR 942426 | Zbl 0679.52007

[14] Fusco, N. - Maggi, F. - Pratelli, A., The sharp quantitative isoperimetric inequality, to appear on Ann. of Math. | MR 2456887 | Zbl 1187.52009

[15] Fusco, N., The classical isoperimetric theorem, Rend. Acc. Sc. fis. mat. Napoli LXXI, (2004), 63-107. | MR 2147710 | Zbl 1096.49024

[16] Hall, R.R., A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math.428 (1992), 161-175. | MR 1166511 | Zbl 0746.52012

[17] Hall, R.R. - Hayman, W.K., A problem in the theory of subordination, J. Anal. Math. 60 (1993), 99-111. | MR 1253231 | Zbl 0851.42008

[18] Hardy, G.H. - Littlewood, J.E. - Pólya, G., Inequalities. 2nd ed., 1st. paperback ed., Cambridge Mathematical Library. Cambridge (UK) etc.: Cambridge University Press. xii, 324 p., 1988. | MR 944909

[19] Hurwitz, A., On the isoperimetric problem. (Sur le problème des isopérimètres.), C. R. 132 (1901), 401-403. | Zbl 32.0386.01

[20] Kawohl, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics.1150. Berlin etc.: Springer-Verlag. V, 136 p. DM 21.50, 1985. | MR 810619 | Zbl 0593.35002

[21] Lebesgue, H., Lecons sur les séries trigonométriques professées au Collège de France, Paris: Gauthier-Villars. 125 S. 8 , 1906. | MR 389527 | Zbl 37.0281.01

[22] Osserman, R., The isoperimetric inequality, Bull. Am. Math. Soc.84 (1978), 1182- 1238. | MR 500557 | Zbl 0411.52006

[23] Osserman, R., Bonnesen-style isoperimetric inequalities., Am. Math. Mon.86 (1979), 1-29. | MR 519520 | Zbl 0404.52012

[24] Stredulinsky, E. - Ziemer, William P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal. 7 (1997), no. 4, 653-677. | MR 1669207 | Zbl 0940.49025

[25] Talenti, G., Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 3 (1976), 697-718. | MR 601601 | Zbl 0341.35031

[26] Talenti, G., Linear elliptic P.D.E.'s: Level sets. Rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., VI. Ser., B 4 (1985), 917-949. | MR 831299 | Zbl 0602.35025

[27] Talenti, G., The standard isoperimetric theorem., Gruber, P. M. (ed.) et al., Hand-book of convex geometry. Volume A. Amsterdam: North-Holland. (1993), 73-123. | MR 1242977 | Zbl 0799.51015