Let be a proper variety of associative algebras over a field of characteristic zero. It is well-known that can have polynomial or exponential growth and here we present some classification results of varieties of polynomial growth. In particular we classify all subvarieties of the varieties of almost polynomial growth, i.e., the subvarieties of and , where is the Grassmann algebra and is the algebra of upper triangular matrices.
@article{BUMI_2008_9_1_3_525_0, author = {Daniela La Mattina}, title = {Varieties of Algebras of Polynomial Growth}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {525-538}, zbl = {1204.16019}, mrnumber = {2455329}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_3_525_0} }
La Mattina, Daniela. Varieties of Algebras of Polynomial Growth. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 525-538. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_3_525_0/
[1] Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra, 91, no 1 (1984), 1-17. | MR 765766 | Zbl 0552.16006
,[2] Relations for the cocharacter sequences of T-ideals, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 285-300, Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992. | MR 1175839 | Zbl 0766.16012
,[3] | MR 1712064 | Zbl 0936.16001
, Free algebras and PI-algebras, Graduate course in algebra, Springer-VerlagSingapore, Singapore, 2000.[4] Exact asymptotic behaviour of the codimensions of some P.I. algebras, Israel J. Math., 96 (1996), 231-242. | MR 1432733 | Zbl 0884.16014
- ,[5] PI-algebras with slow codimension growth, J. Algebra, 284 (2005), 371-391. | MR 2115020 | Zbl 1071.16021
- ,[6] Matrix algebras of polynomial codimension growth, Israel J. Math., 158 (2007), 367-378. | MR 2342471 | Zbl 1127.16018
- - ,[7] On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155. | MR 1658530 | Zbl 0920.16012
- ,[8] Exponential codimension growth of PI algebras: an exact estimate, Adv. Math., 142 (1999), 221-243. | MR 1680198 | Zbl 0920.16013
- ,[9] A characterization of algebras with polynomial growth of the codimensions, Proc. Amer. Math. Soc., 129 (2000), 59-67. | MR 1694862 | Zbl 0962.16018
- ,[10] Asymptotics for the standard and the Capelli identities, Israel J. Math., 135 (2003), 125-145. | MR 1996399 | Zbl 1048.16012
- ,[11] 122, Amer. Math. Soc., Providence R.I., 2005. | MR 2176105 | Zbl 1105.16001
- , Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs Vol.[12] On the growth of identities, Algebra (Moscow, 1998) de Gruyter, Berlin, (2000), 319-330. | MR 1754678 | Zbl 0964.16025
- ,[13] T-ideals with power growth of the codimensions are Specht, Sibirsk. Mat. Zh., 19 (1978), 54-69 (in Russian), English translation: Sib. Math. J., 19 (1978), 37-48. | MR 466190 | Zbl 0411.16014
,[14] Varieties of finite rank., Proc. 15-th All the Union Algebraic Conf., Krasnoyarsk, Vol. 2 (1979), 73 (in Russian).
,[15] The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc., 181 (1973), 429-438. | MR 325658 | Zbl 0289.16015
- ,[16] Varieties of almost polynomial growth: classifying their subvarieties, Manuscripta Math., 123 (2007), 185-203. | MR 2306632 | Zbl 1119.16022
,[17] A basis for the identities of the algebra of upper triangular matrices, (Russian) Algebra i Logika, 10 (1971), 242-247. | MR 304426
,[18] Existence of identities in , Israel J. Math., 11 (1972), 131-152. | MR 314893 | Zbl 0249.16007
,