We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.
@article{BUMI_2008_9_1_2_489_0, author = {Martino Bardi and Paola Mannucci}, title = {Comparison Principles for Subelliptic Equations of Monge-Amp\`ere Type}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {489-495}, zbl = {1203.35081}, mrnumber = {2424306}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_2_489_0} }
Bardi, Martino; Mannucci, Paola. Comparison Principles for Subelliptic Equations of Monge-Ampère Type. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 489-495. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_2_489_0/
[1] On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal., 5 (2006), 709-731. | MR 2246004 | Zbl 1142.35041
- ,[2] Comparison principles for equations of Monge-Ampére type associated to vector fields, to appear. | MR 2605147 | Zbl 1203.35081
- ,[3] 370, Amer. Math. Soc., Providence, RI, 2005, 1-9. | MR 2126697 | Zbl 1084.49028
- - , The maximum principle for vector fields, Contemp. Math.[4] 144, Birkhäuser Verlag, Basel, 1996. | MR 1421821
- eds, Sub-Riemannian geometry, Progress in Mathematics,[5] On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. | MR 1900561 | Zbl 1090.35063
,[6] Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. | MR 1951247 | Zbl 1029.35079
,[7] | MR 2363343 | Zbl 1128.43001
- - , Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin 2007.[8] 353 (2004), Amer. Math. Soc., Providence, RI, 2004, 43-52. | MR 2079068 | Zbl 1149.35345
, The Monge Ampere equation and Optimal Transportation, Contemp. Math.,[9] User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. | MR 1118699 | Zbl 0755.35015
- - ,[10] Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341. | MR 2014879 | Zbl 1077.22007
- - ,[11] New properties of convex functions in the Heisenberg group, Trans. Amer. Math. Soc., 358 (2006), 2011-2055. | MR 2197446 | Zbl 1102.35033
- ,[12] Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. | MR 2103838 | Zbl 1056.35033
- ,[13] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. | MR 1031377 | Zbl 0708.35031
- ,[14] Convex functions in Carnot groups, Rev. Mat. Iberoamericana, 23 (2007), 191-200. | MR 2351130 | Zbl 1124.49024
- - - ,[15] Convex functions on the Heisenberg Group, Calc. Var. Partial Differential Equations, 19 (2004), 1-22. | MR 2027845 | Zbl 1072.49019
- - ,[16] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, Math. Ann., 334 (2006), 199-233. | MR 2208954 | Zbl 1115.49004
,[17] Nonlinear Subelliptic Equations on Carnot Groups, Third School on Analysis and Geometry in Metric Spaces, Trento, 2003, available at http://www.pitt.edu/ manfredi/
,[18] First order regularity of convex functions on Carnot groups, J. Geom. Anal., 16 (2006), 679-702. | MR 2271949 | Zbl 1103.43005
,[19] Recent developments in elliptic partial differential equations of Monge-Ampére type, International Congress of Mathematicians. Vol. III, 291-301, Eur. Math. Soc., Zurich, 2006. | MR 2275682 | Zbl 1130.35058
,