Comparison Principles for Subelliptic Equations of Monge-Ampère Type
Bardi, Martino ; Mannucci, Paola
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 489-495 / Harvested from Biblioteca Digitale Italiana di Matematica

We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.

Publié le : 2008-06-01
@article{BUMI_2008_9_1_2_489_0,
     author = {Martino Bardi and Paola Mannucci},
     title = {Comparison Principles for Subelliptic Equations of Monge-Amp\`ere Type},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {489-495},
     zbl = {1203.35081},
     mrnumber = {2424306},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_2_489_0}
}
Bardi, Martino; Mannucci, Paola. Comparison Principles for Subelliptic Equations of Monge-Ampère Type. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 489-495. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_2_489_0/

[1] Bardi, M. - Mannucci, P., On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal., 5 (2006), 709-731. | MR 2246004 | Zbl 1142.35041

[2] Bardi, M. - Mannucci, P., Comparison principles for equations of Monge-Ampére type associated to vector fields, to appear. | MR 2605147 | Zbl 1203.35081

[3] Beatrous, F. H. - Bieske, T.J. - Manfredi, J. J., The maximum principle for vector fields, Contemp. Math. 370, Amer. Math. Soc., Providence, RI, 2005, 1-9. | MR 2126697 | Zbl 1084.49028

[4] A. Bellaiche - J. J. Risler eds, Sub-Riemannian geometry, Progress in Mathematics, 144, Birkhäuser Verlag, Basel, 1996. | MR 1421821

[5] Bieske, T., On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. | MR 1900561 | Zbl 1090.35063

[6] Bieske, T., Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. | MR 1951247 | Zbl 1029.35079

[7] Bonfiglioli, A. - Lanconelli, E. - Uguzzoni, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin 2007. | MR 2363343 | Zbl 1128.43001

[8] Caffarelli, L. A., The Monge Ampere equation and Optimal Transportation, Contemp. Math., 353 (2004), Amer. Math. Soc., Providence, RI, 2004, 43-52. | MR 2079068 | Zbl 1149.35345

[9] Crandall, M. G. - Ishii, H. - Lions, P. L., User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. | MR 1118699 | Zbl 0755.35015

[10] Danielli, D. - Garofalo, N. - Nhieu, D. M., Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341. | MR 2014879 | Zbl 1077.22007

[11] Garofalo, N. - Tournier, F., New properties of convex functions in the Heisenberg group, Trans. Amer. Math. Soc., 358 (2006), 2011-2055. | MR 2197446 | Zbl 1102.35033

[12] Gutiérrez, C. E. - Montanari, A., Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. | MR 2103838 | Zbl 1056.35033

[13] Ishii, H. - Lions, P. L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. | MR 1031377 | Zbl 0708.35031

[14] Juutinen, P. - Lu, G. - Manfredi, J. - Stroffolini, B., Convex functions in Carnot groups, Rev. Mat. Iberoamericana, 23 (2007), 191-200. | MR 2351130 | Zbl 1124.49024

[15] Lu, G. - Manfredi, J. - Stroffolini, B., Convex functions on the Heisenberg Group, Calc. Var. Partial Differential Equations, 19 (2004), 1-22. | MR 2027845 | Zbl 1072.49019

[16] Magnani, V., Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, Math. Ann., 334 (2006), 199-233. | MR 2208954 | Zbl 1115.49004

[17] Manfredi, J. J., Nonlinear Subelliptic Equations on Carnot Groups, Third School on Analysis and Geometry in Metric Spaces, Trento, 2003, available at http://www.pitt.edu/ manfredi/

[18] Rickly, M., First order regularity of convex functions on Carnot groups, J. Geom. Anal., 16 (2006), 679-702. | MR 2271949 | Zbl 1103.43005

[19] Trudinger, N. S., Recent developments in elliptic partial differential equations of Monge-Ampére type, International Congress of Mathematicians. Vol. III, 291-301, Eur. Math. Soc., Zurich, 2006. | MR 2275682 | Zbl 1130.35058