This paper deals with the well-posedness in of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.
@article{BUMI_2008_9_1_2_439_0, author = {Giuseppe Maria Coclite and Kenneth H. Karlsen}, title = {Bounded Solutions for the Degasperis-Procesi Equation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {439-453}, zbl = {1164.35071}, mrnumber = {2424303}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_2_439_0} }
Coclite, Giuseppe Maria; Karlsen, Kenneth H. Bounded Solutions for the Degasperis-Procesi Equation. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 439-453. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_2_439_0/
[1] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. | MR 1234453 | Zbl 0972.35521
- ,[2] Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. | MR 2192287 | Zbl 1100.35106
- - ,[3] Wellposedness for a parabolic-elliptic system, Discrete Contin. Dynam. Systems, 13 (2005), 659-682. | MR 2152336 | Zbl 1082.35056
- - ,[4] On the wellposedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. | MR 2204675 | Zbl 1090.35142
- ,[5] On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation, J. Differential Equations, 233 (2007), 142-160. | MR 2298968 | Zbl 1133.35028
- ,[6] A Semigroup of Solutions for the Degasperis-Procesi Equation, WASCOM 2005-13th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ (2006), 128-133. | MR 2172828 | Zbl 1345.35123
- ,[7] Integrable and non-integrable equations with peakons, Nonlinear physics: theory and experiment, II (Gallipoli, 2002), World Sci. Publishing, River Edge, NJ (2003), 37-43. | MR 2028761 | Zbl 1053.37039
- - ,[8] A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133 (2002), 170-183. | MR 2001531
- - ,[9] Asymptotic integrability, Symmetry and perturbation theory (Rome, 1998), World Sci. Publishing, River Edge, NJ (1999), 23-37. | MR 1844104 | Zbl 0963.35167
- ,[10] Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, IMA J. Numer. Anal., 28 (2008), 80-105. | MR 2387906 | Zbl 1246.76114
- - ,[11] Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (1994), 331-363. | MR 1811323
- ,[12] Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. | MR 2271927 | Zbl 1126.35053
- - ,[13] Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. | MR 2305931 | Zbl 1124.35041
- - ,[14] On the initial boundary value problems for the Degasperis-Procesi equation, Phys. Lett. A, 368 (2007), 69-76. | MR 2328777 | Zbl 1209.35114
- ,[15] Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. | MR 636470 | Zbl 1194.37114
- ,[16] A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, Electron. J. Diff. Eqns., 2007 (2007), 1-22. | MR 2328701 | Zbl 1133.35430
,[17] Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2003 (2), 323-380. | MR 2031278 | Zbl 1088.76531
- ,[18] First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243.
,[19] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. | MR 1211741 | Zbl 0808.35128
- - ,[20] Camassa-Holm, Korteweg-de Vries and related models for water waves., J. Fluid Mech., 455 (2002), 63-82. | MR 1894796 | Zbl 1037.76006
,[21] Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820. | MR 2249792 | Zbl 1131.35074
- ,[22] Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. | MR 2036528 | Zbl 1041.35090
- ,[23] L'injection du cône positif de dans est compacte pour tout , J. Math. Pures Appl. (9), 60 (1981), 309-322. | MR 633007
,[24] A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14. | MR 2122861 | Zbl 1067.35078
,[25] Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Pitman, Boston, Mass., IV (1979), 136-212. | MR 584398
,[26] Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. | MR 668586 | Zbl 0496.35058
,[27] Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139. | MR 1994177 | Zbl 1033.35121
,[28] On the Cauchy problem for an integrable equation with peakon solutions., Illinois J. Math., 47 (2003), 649-666. | MR 2007229 | Zbl 1061.35142
,[29] Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209. | MR 2095454 | Zbl 1062.35094
,[30] Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194. | MR 2065241 | Zbl 1059.35149
,