Bounded Solutions for the Degasperis-Procesi Equation
Coclite, Giuseppe Maria ; Karlsen, Kenneth H.
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 439-453 / Harvested from Biblioteca Digitale Italiana di Matematica

This paper deals with the well-posedness in L1L of the Cauchy problem for the Degasperis-Procesi equation. This is a third order nonlinear dispersive equation in one spatial variable and describes the dynamics of shallow water waves.

Publié le : 2008-06-01
@article{BUMI_2008_9_1_2_439_0,
     author = {Giuseppe Maria Coclite and Kenneth H. Karlsen},
     title = {Bounded Solutions for the Degasperis-Procesi Equation},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {439-453},
     zbl = {1164.35071},
     mrnumber = {2424303},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_2_439_0}
}
Coclite, Giuseppe Maria; Karlsen, Kenneth H. Bounded Solutions for the Degasperis-Procesi Equation. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 439-453. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_2_439_0/

[1] Camassa, R. - Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. | MR 1234453 | Zbl 0972.35521

[2] Coclite, G. M. - Holden, H. - Karlsen, K. H., Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069. | MR 2192287 | Zbl 1100.35106

[3] Coclite, G. M. - Holden, H. - Karlsen, K. H., Wellposedness for a parabolic-elliptic system, Discrete Contin. Dynam. Systems, 13 (2005), 659-682. | MR 2152336 | Zbl 1082.35056

[4] Coclite, G. M. - Karlsen, K. H., On the wellposedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. | MR 2204675 | Zbl 1090.35142

[5] Coclite, G. M. - Karlsen, K. H., On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation, J. Differential Equations, 233 (2007), 142-160. | MR 2298968 | Zbl 1133.35028

[6] Coclite, G. M. - Karlsen, K. H., A Semigroup of Solutions for the Degasperis-Procesi Equation, WASCOM 2005-13th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ (2006), 128-133. | MR 2172828 | Zbl 1345.35123

[7] Degasperis, A. - Holm, D. D. - Hone, A. N. W., Integrable and non-integrable equations with peakons, Nonlinear physics: theory and experiment, II (Gallipoli, 2002), World Sci. Publishing, River Edge, NJ (2003), 37-43. | MR 2028761 | Zbl 1053.37039

[8] Degasperis, A. - Holm, D. D. - Khon, A. N. I., A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133 (2002), 170-183. | MR 2001531

[9] Degasperis, A. - Procesi, M., Asymptotic integrability, Symmetry and perturbation theory (Rome, 1998), World Sci. Publishing, River Edge, NJ (1999), 23-37. | MR 1844104 | Zbl 0963.35167

[10] Coclite, G. M. - Karlsen, K. H. - Risebro, N. H., Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, IMA J. Numer. Anal., 28 (2008), 80-105. | MR 2387906 | Zbl 1246.76114

[11] Dai, H.-H. - Huo, Y., Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (1994), 331-363. | MR 1811323

[12] Escher, J. - Liu, Y. - Yin, Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485. | MR 2271927 | Zbl 1126.35053

[13] Escher, J. - Liu, Y. - Yin, Z., Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117. | MR 2305931 | Zbl 1124.35041

[14] Escher, J. - Yin, Z., On the initial boundary value problems for the Degasperis-Procesi equation, Phys. Lett. A, 368 (2007), 69-76. | MR 2328777 | Zbl 1209.35114

[15] Fuchssteiner, B. - Fokas, A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. | MR 636470 | Zbl 1194.37114

[16] Hoel, H. A., A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, Electron. J. Diff. Eqns., 2007 (2007), 1-22. | MR 2328701 | Zbl 1133.35430

[17] Holm, D. D. - Staley, M. F., Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2003 (2), 323-380. | MR 2031278 | Zbl 1088.76531

[18] Kruzïkov, S. N., First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10 (1970), 217-243.

[19] Kenig, C. E. - Ponce, C. E. - Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. | MR 1211741 | Zbl 0808.35128

[20] Johnson, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves., J. Fluid Mech., 455 (2002), 63-82. | MR 1894796 | Zbl 1037.76006

[21] Liu, Y. - Yin, Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820. | MR 2249792 | Zbl 1131.35074

[22] Lundmark, H. - Szmigielski, J., Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19 (2003), 1241-1245. | MR 2036528 | Zbl 1041.35090

[23] Murat, F., L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q<2, J. Math. Pures Appl. (9), 60 (1981), 309-322. | MR 633007

[24] Mustafa, O. G., A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14. | MR 2122861 | Zbl 1067.35078

[25] Tartar, L., Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Pitman, Boston, Mass., IV (1979), 136-212. | MR 584398

[26] Schonbek, M. E., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. | MR 668586 | Zbl 0496.35058

[27] Yin, Z., Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139. | MR 1994177 | Zbl 1033.35121

[28] Yin, Z., On the Cauchy problem for an integrable equation with peakon solutions., Illinois J. Math., 47 (2003), 649-666. | MR 2007229 | Zbl 1061.35142

[29] Yin, Z., Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209. | MR 2095454 | Zbl 1062.35094

[30] Yin, Z., Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194. | MR 2065241 | Zbl 1059.35149