Algebre di Koszul
Conca, Aldo
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 429-437 / Harvested from Biblioteca Digitale Italiana di Matematica

The goal of the talk is to introduce and discuss the notion Koszul algebra in the commutative setting along with the associated notions of G-quadraticity and Koszul filtration. We present some results that appear in the papers [C, CTV, CRV] joint with M.E.Rossi, N.V.Trung and G.Valla. These results concern Koszul and G-quadratic properties of algebras associated with points, curves, cubics and spaces of quadrics of low codimension.

Publié le : 2008-06-01
@article{BUMI_2008_9_1_2_429_0,
     author = {Aldo Conca},
     title = {Algebre di Koszul},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {429-437},
     zbl = {1181.13012},
     mrnumber = {2424302},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_2_429_0}
}
Conca, Aldo. Algebre di Koszul. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 429-437. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_2_429_0/

[A] Anick, D., A counterexample to a conjecture of Serre, Ann. of Math. (2), 115, no. 1 (1982), 1-33. | MR 644015 | Zbl 0454.55004

[BHV] Bruns, W. - Herzog, J. - Vetter, U., Syzygies and walks, ICTP Proceedings `Commutative Algebra', Eds. A. Simis, N. V. Trung, G. Valla, World Scientific 1994, 36-57. | MR 1421076

[B] Backelin, J., A distributiveness property of augmented algebras and some related homological results, Ph.D. thesis, Stockholm University, 1982.

[BF] Backelin, J. - Fröberg, R., Poincarè series of short Artinian rings. J. Algebra, 96, no. 2 (1985), 495-498. | MR 810542

[BF1] Backelin, J. - Fröberg, R., Veronese subrings, Koszul algebras and rings with linear resolutions. Rev. Roum. Pures Appl., 30 (1985), 85-97. | MR 789425

[Ca] Caviglia, G., The pinched Veronese is Koszul. preprint2006, math. AC/0602487. | MR 2563140 | Zbl 1213.13003

[C] Conca, A., Gröbner bases for spaces of quadrics of low codimension. Adv. in Appl. Math., 24, no. 2 (2000), 111-124. | MR 1748965 | Zbl 1046.13001

[C1] Conca, A., Gröbner bases for spaces of quadrics of codimension 3, preprint 2007, arXiv:0709.3917. | MR 2517993

[CRV] Conca, A. - Rossi, M. E. - Valla, G., Groöbner flags and Gorenstein algebras. Compositio Math., 129, no. 1 (2001), 95-121. | MR 1856025 | Zbl 1030.13005

[CTV] Conca, A. - Trung, N. V. - Valla, G., Koszul property for points in projective spaces, Math. Scand., 89 no. 2 (2001), 201-216. | MR 1868173 | Zbl 1025.13003

[ERT] Eisenbud, D. - Reeves, A. - Totaro, B., Initial ideals, Veronese subrings, and rates of algebras, Adv. Math., 109 (1994), 168-187. | MR 1304751 | Zbl 0839.13013

[F] Fröberg, R., Koszul algebras, in "Advances in Commutative Ring Theory", Proc. Fez Conf. 1997, Lecture Notes in Pure and Applied Mathematics, volume 205, Dekker Eds., 1999.

[HHR] Herzog, J. - Hibi, T. - Restuccia, G., Strongly Koszul algebras, Math. Scand., 86, no. 2 (2000), 161-178. | MR 1754992 | Zbl 1061.13008

[K] Kempf, G., Syzygies for points in projective space, J. Algebra, 145 (1992), 219-223. | MR 1144669 | Zbl 0748.13006

[PP] Pareschi, G. - Purnaprajna, B. P., Canonical ring of a curve is Koszul: a simple proof, Illinois J. Math., 41, no. 2 (1997), 266-271. | MR 1441677 | Zbl 0916.14013

[P] Polishchuk, A., On the Koszul property of the homogeneous coordinate ring of a curve, J. Algebra, 178, no. 1 (1995), 122-135. | MR 1358259 | Zbl 0861.14030

[P2] Polishchuk, A., Koszul configurations of points in projective spaces. J. Algebra, 298, no. 1 (2006), 273-283. | MR 2215128 | Zbl 1100.13014

[R] Roos, J. E., A description of the homological behaviour of families of quadratic forms in four variables, in Syzygies and Geometry, Boston 1995, A. Iarrobino, A. Martsinkovsky and J. Weyman eds., pp. 86-95, Northeastern Univ. 1995.

[RS] Roos, J. E. - Sturmfels, B., A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math., 326, no. 2 (1998), 141-146. | MR 1646972 | Zbl 0934.14033

[S] Paris Serre, J., Algébre locale. Multiplicités, Lecture Notes in Mathematics11, Springer, 1965. | MR 201468

[VF] Vishik, A. - Finkelberg, M., The coordinate ring of general curve of genus g5 is Koszul, J. Algebra, 162, no. 2 (1993), 535-539. | MR 1254790 | Zbl 0819.14008