In this work we have reconsidered the famous paper of Bombieri, De Giorgi and Giusti [4] and, thanks to the software Mathematica® we made it possible for anybody to control the difficult computations.
@article{BUMI_2008_9_1_2_349_0, author = {Umberto Massari and Mario Miranda and Michele Jr. Miranda}, title = {The Bernstein Theorem in Higher Dimensions}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {349-359}, zbl = {1217.49032}, mrnumber = {2424298}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_2_349_0} }
Massari, Umberto; Miranda, Mario; Miranda, Michele Jr. The Bernstein Theorem in Higher Dimensions. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 349-359. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_2_349_0/
[1] Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann. of Math. (2), 84 (1966), 277-292. | MR 200816 | Zbl 0146.11905
,[2] I coni di Lawson e il Teorema di Bernstein PhD Thesis, University of Trento, unpublished, 1994.
,[3] Lawson cones and the Bernstein theorem. Advances in geometric analysis and continuum mechanics (1995), 44-56. | MR 1356726 | Zbl 0860.53003
- ,[4] Minimal cones and the Bernstein problem. Invent. Math., 7 (1969), 243-268. | MR 250205 | Zbl 0183.25901
- - ,[5] | MR 419125
, editor. Mathematical developments arising from Hilbert problems. American Mathematical Society, Providence, R. I., 1976.[6] | MR 179651 | Zbl 0296.49031
, Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, Editrice Tecnico Scientifica, Pisa, 1961.[7] | MR 179650
, Complementi alla teoria della misura -dimensionale in uno spazio n-dimensionale. Seminario di Matematica della Scuola Normale Superiore di Pisa, Editrice Tecnico Scientifica, Pisa1961.[8] | MR 493669 | Zbl 0296.49031
- - , Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa, 1972.[9] Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa (3), 19 (1965), 79-85. | MR 178385
,[10] | MR 2229237
, Selected papers. Springer-Verlag, Berlin, 2006.[11] On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2), 11 (1962), 69-90. | MR 157263 | Zbl 0107.31304
,[12] A remark on minimal cones. Boll. Un. Mat. Ital. A (6), 2 (1) (1983), 123-125. | MR 694754 | Zbl 0518.49030
- ,[13] Un teorema di esistenza e unicità per il problema dell'area minima in n variabili. Ann. Scuola Norm. Sup. Pisa (3), 19 (1965), 233-249. | MR 181918 | Zbl 0137.08201
,[14] Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), 269-272. | MR 467551
,[15] Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4, n. 2 (1977), 313-322. | MR 500423
,[16] A nontrivial solution to the minimal surface equation in . In Boundary value problems for partial differential equations and applications, volume 29 of RMA Res. Notes Appl. Math., pages 399-402. Masson, Paris, 1993. | MR 1260469 | Zbl 0792.49028
,[17] Elementary proof of Bernstein's theorem on minimal surfaces. Ann. of Math. (2), 66 (1957), 543-544. | MR 90833 | Zbl 0079.37702
,[18] Minimal varieties in riemannian manifolds. Ann. of Math. (2), 88 (1968), 62-105. | MR 233295 | Zbl 0181.49702
.[19] IL, Cambridge University Press, Cambridge, 1999. | MR 1721106
, The Mathematica® book. Fourth edition. Wolfram Media, Inc., Champaign,