The following results are proved: (i) if , and is a sectorial operator, then the set is bounded; (ii) the same set of operators is R-bounded if is R-sectorial.
Si dimostra che: (i) se , e è un operatore settoriale, allora l'insieme è limitato; (ii) che lo stesso insieme di operatori è R-limitato se è R-settoriale.
@article{BUMI_2008_9_1_1_79_0, author = {Alberto Venni}, title = {A Note on Sectorial and R-Sectorial Operators}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {79-85}, zbl = {1164.47041}, mrnumber = {2387998}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_79_0} }
Venni, Alberto. A Note on Sectorial and R-Sectorial Operators. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 79-85. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_79_0/
[1] Schauder decompositions and multiplier theorems, Studia Math., 138 (2000), 135-163. | MR 1749077 | Zbl 0955.46004
- - - ,[2] R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, no. 788 (2003). | MR 2006641
- - ,[3] Boundary value problems for second order elliptic differential-operator equations in UMD Banach spaces, preprint 2007. | MR 2555735 | Zbl 1214.34046
- ,[4] 169, Birkhauser Verlag2006. | MR 2244037 | Zbl 1101.47010
, The Functional Calculus for Sectorial Operators, Operator Theory, Advances and Applications,[5] The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187, Elsevier 2001. | MR 1850825 | Zbl 0971.47011
- ,[6] Operator-valued Fourier multiplier theorems and maximal -regularity, Math. Ann., 319 (2001), 735-758. | MR 1825406 | Zbl 0989.47025
,