In this paper we determine all squarefree completely lexsegment ideals which have a linear resolution. Let denote the set of all squarefree monomials of degree in a polynomial ring in variables over a field . We order the monomials lexicographically such that , thus a lexsegment (of degree ) is a subset of of the form for some con . An ideal generated by a lexsegment is called a lexsegment ideal. We describe the procedure to determine when such an ideal has a linear resolution.
In questo articolo determiniamo tutti gli ideali completamente lexsegmento squarefree con risoluzione lineare. Sia l'insieme di tutti i monomi squarefree di grado in un anello di polinomi in variabili su un campo . Ordiniamo i monomi lessicograficamente in modo che , così un lexsegmento (di grado ) è un sottoinsieme di del tipo per qualche con . Un ideale generato da un lexsegmento è chiamato ideale lexsegmento. Descriviamo la procedura per determinare quando un tale ideale ha risoluzione lineare.
@article{BUMI_2008_9_1_1_275_0, author = {Vittoria Bonanzinga and Loredana Sorrenti}, title = {Squarefree Lexsegment Ideals with Linear Resolution}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {275-291}, zbl = {1164.13009}, mrnumber = {2424294}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_275_0} }
Bonanzinga, Vittoria; Sorrenti, Loredana. Squarefree Lexsegment Ideals with Linear Resolution. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 275-291. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_275_0/
[1] Resolutions of monomial ideals and cohomology over exterior algebras, Trans. AMS, 352 (2) (2000), 579-594. | MR 1603874 | Zbl 0930.13011
- - ,[2] Lexsegment ideals with linear resolution, Illinois J. of Math., 42 (3) (1998), 509-523. | MR 1631268 | Zbl 0904.13008
- - ,[3] Squarefree lexsegment ideals, Math. Z., 228 (2) (1998), 353-378. | MR 1630500 | Zbl 0914.13007
- - ,[4] Lexsegment ideals in the exterior algebra, in "Geometric and Combinatorial aspects of commutative algebra", ( and Eds.), Lect. Notes in Pure and Appl. Math., 4, Dekker, New York, (1999), 43-56. | MR 1824216
,[5] Completely lexsegment ideals, Proc. Amer. Math. Soc., 126 (12) (1998), 3467-3473. | MR 1452799 | Zbl 0906.13004
- ,[6] Minimal resolutions of some monomial ideals, J. Algebra, 129 (1990), 1-25. | MR 1037391 | Zbl 0701.13006
- ,[7] Betti numbers of lexsegment ideals, J. Algebra, 275 (2004), 2, 629-638. | MR 2052630 | Zbl 1091.13014
- ,