Squarefree Lexsegment Ideals with Linear Resolution
Bonanzinga, Vittoria ; Sorrenti, Loredana
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 275-291 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper we determine all squarefree completely lexsegment ideals which have a linear resolution. Let Md denote the set of all squarefree monomials of degree d in a polynomial ring k[x1,,xn] in n variables over a field k. We order the monomials lexicographically such that x1>x2>>xn, thus a lexsegment (of degree d) is a subset of Md of the form L(u,v)={wMd:uwv} for some u,vMd con uv. An ideal generated by a lexsegment is called a lexsegment ideal. We describe the procedure to determine when such an ideal has a linear resolution.

In questo articolo determiniamo tutti gli ideali completamente lexsegmento squarefree con risoluzione lineare. Sia Md l'insieme di tutti i monomi squarefree di grado d in un anello di polinomi k[x1,,xn] in n variabili su un campo k. Ordiniamo i monomi lessicograficamente in modo che x1>x2>>xn, così un lexsegmento (di grado d) è un sottoinsieme di Md del tipo L(u,v)={wMd:uwv} per qualche u,vMd con uv. Un ideale generato da un lexsegmento è chiamato ideale lexsegmento. Descriviamo la procedura per determinare quando un tale ideale ha risoluzione lineare.

Publié le : 2008-02-01
@article{BUMI_2008_9_1_1_275_0,
     author = {Vittoria Bonanzinga and Loredana Sorrenti},
     title = {Squarefree Lexsegment Ideals with Linear Resolution},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {275-291},
     zbl = {1164.13009},
     mrnumber = {2424294},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_275_0}
}
Bonanzinga, Vittoria; Sorrenti, Loredana. Squarefree Lexsegment Ideals with Linear Resolution. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 275-291. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_275_0/

[1] Aramova, A. - Avramov, L. L. - Herzog, J., Resolutions of monomial ideals and cohomology over exterior algebras, Trans. AMS, 352 (2) (2000), 579-594. | MR 1603874 | Zbl 0930.13011

[2] Aramova, A. - De Negri, E. - Herzog, J., Lexsegment ideals with linear resolution, Illinois J. of Math., 42 (3) (1998), 509-523. | MR 1631268 | Zbl 0904.13008

[3] Aramova, A. - Herzog, J. - Hibi, T., Squarefree lexsegment ideals, Math. Z., 228 (2) (1998), 353-378. | MR 1630500 | Zbl 0914.13007

[4] Bonanzinga, V., Lexsegment ideals in the exterior algebra, in "Geometric and Combinatorial aspects of commutative algebra", (J. Herzog and G. Restuccia Eds.), Lect. Notes in Pure and Appl. Math., 4, Dekker, New York, (1999), 43-56. | MR 1824216

[5] De Negri, E. - Herzog, J., Completely lexsegment ideals, Proc. Amer. Math. Soc., 126 (12) (1998), 3467-3473. | MR 1452799 | Zbl 0906.13004

[6] Eliahou, S. - Kervaire, M., Minimal resolutions of some monomial ideals, J. Algebra, 129 (1990), 1-25. | MR 1037391 | Zbl 0701.13006

[7] Hulett, H. A. - Martin, H. M., Betti numbers of lexsegment ideals, J. Algebra, 275 (2004), 2, 629-638. | MR 2052630 | Zbl 1091.13014