This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
@article{BUMI_2008_9_1_1_265_0, author = {M. Pulvirenti}, title = {On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {265-274}, zbl = {1164.35067}, mrnumber = {2424293}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_265_0} }
Pulvirenti, M. On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 265-274. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_265_0/
[BDP] Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations, No. 44 (electronic) (2006), 32. | MR 2226917 | Zbl 1112.35023
- - ,[CLMP1] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Comm. Math. Phys., 143, 3 (1992), 501-525. | MR 1145596 | Zbl 0745.76001
- - - ,[CLMP2] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Comm. Math. Phys., 174, 2 (1995), 229-260. | MR 1362165 | Zbl 0840.76002
- - - ,[CPR 1] Quasistationary states for the 2-D Navier-Stokes Equation. preprint (2007).
- - ,[CPR 2] 2-D constrained Navier-Stokes Equation and intermediate asymptotic. preprint (2007). | MR 2456338 | Zbl 1143.76022
- - ,[GL] Sur les états d'èquilibre pour les densitès électroniques dans les plasmas. RAIRO Modèl Math. Anal. Num., 23, no. 1 (1989), 137-153. | MR 1015923 | Zbl 0665.76145
- ,[JL] On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329, no. 2 (1992), 819-824. | MR 1046835 | Zbl 0746.35002
- ,[K] M. Statistical mechanics of classical particles with logarithmic interactions. Comm. Pure Appl. Math., 46, no. 1 (1993), 27-56. | MR 1193342 | Zbl 0811.76002
,[KL] M. The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys., 42, no. 1 (1997), 43-58. | MR 1473359 | Zbl 0902.76021
- ,[LP] Statistical mechanics of two-dimensional vortices in a bounded container. Phys. Fluids, 19 (1976), 1459-1470. | Zbl 0339.76013
- ,[MP] 96 Springer (1991). | MR 1245492 | Zbl 0789.76002
- , Mathematical Theory of Incompressible Nonviscous Fluids. Appl Math series, n.[MJ] Statistical mechanics of "negative temperature" states. Phys. Fluids, 17 (1974), 1139-1145. | MR 384035
- ,[O] Statistical hydrodynamics. Nuovo Cimento (9) 6, Supplemento, 2 (Convegno Internazionale di Meccanica Statistica) (1949), 279-287. | MR 36116
,