A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.
@article{BUMI_2008_9_1_1_223_0, author = {Luigi Ambrosio}, title = {Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {223-240}, zbl = {1210.28005}, mrnumber = {2388005}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_223_0} }
Ambrosio, Luigi. Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, and Applications to Fokker-Planck Equations with Respect to Log-Concave Measures. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 223-240. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_223_0/
[1] Maximality of infinite-dimensional Dirichlet forms and Hegh-Krohn's model of quantum fields. Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge Univ. Press, Cambridge (2002), 301-330. | MR 1190532 | Zbl 0798.46055
- ,[2] | MR 1857292 | Zbl 0957.49001
- - , Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000).[3] | MR 2129498 | Zbl 1090.35002
- - , Gradient flows in metric spaces and in the spaces of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2005).[4] Gradient flows in spaces of probability measures. Handbook of Differential Equations. Evolutionary equations III, North Holland 2007. | MR 2549368
- ,[5] Existence and Stability for Fokker-Planck equations with log-concave reference measure. (2007), Submitted paper. | MR 2529438
- - ,[6] Solutions intégrales d'équations d'évolution dans un espace de Banach. C.R.Acad.Sci. Paris Sér. A-B, 274, (1972). | MR 300164 | Zbl 0246.47068
,[7] 62, AMS (1998). | MR 1642391
, Gaussian measures. Mathematical Surveys and Monographs,[8] Convex set functions in d-space. Period. Math. Hungar., 6 (1975), 111-136. | MR 404559 | Zbl 0307.28009
,[9]
, Opérateurs maximaux monotones. North-Holland, Amsterdam, (1973).[10] Contraction in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal., 179 (2006), 217-263. | MR 2209130 | Zbl 1082.76105
- - ,[11] Problème de Skorohod multivoque, Annals of Probability, 26 no. 2 (1998), 500-532. | MR 1626174 | Zbl 0937.34046
,[12] Conservative Stochastic Cahn-Hilliard equation with reflection, to appear in Annals of Probability (2007). | MR 2349572 | Zbl 1130.60068
- ,[13] | MR 1201152 | Zbl 0816.49001
, An introduction to -convergence. Birkhauser (1993).[14] 293, Cambridge University Press (2002). | MR 1985790 | Zbl 1012.35001
- , Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Notes Series,[15] 229, Cambridge University Press (1996). | MR 1417491 | Zbl 0849.60052
- , Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, n.[16] Problems of evolution in metric spaces and maximal decreasing curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 68 (1980), 180-187. | MR 636814 | Zbl 0465.47041
- and ,[17] Wasserstein space over the Wiener space. Preprint, 2007.
,[18] Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space, Probab. Theory Relat. Fields, 128 (2004), 347-385. | MR 2036490 | Zbl 1055.60052
- ,[19] | MR 1303354 | Zbl 0838.31001
- - , Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin-New York (1994).[20] Stochastic Interface Models. In: Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 (ed. ), 103-274, Lect. Notes Math., 1869, Springer (2005). | MR 2228384
,[21] Fluctuations for interface model on a wall. Stoch. Proc. and Appl, 94 (2001), 1-27. | MR 1835843 | Zbl 1055.60096
- ,[22] Motion by mean curvature from the Ginzburg-Landau interface model. Comm. Math. Phys. 185 (1997), 1-36. | MR 1463032 | Zbl 0884.58098
- ,[23] Equilibrium fluctuations for interface model, Ann. Probab. 29 (2001), 1138-1172. | MR 1872740 | Zbl 1017.60100
- - ,[24] | MR 261133
, Partial differential equations. Springer (4th. ed.) (1970).[25] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), 1-17. | MR 1617171 | Zbl 0915.35120
- - ,[26] Open map theorem for metric spaces. St. Petersburg Math. J., 17 (2006), 477-491. | MR 2167848 | Zbl 1152.53033
,[27] | MR 1214375 | Zbl 0826.31001
- , Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext, Springer-Verlag (1992).[28] White noise driven quasilinear SPDEs with reflection, Prob. Theory and Rel. Fields, 93 (1992), 77-89. | MR 1172940 | Zbl 0767.60055
- ,[29] A convexity principle for interacting gases. Adv. Math., 128, (1997) 153-179. | MR 1451422 | Zbl 0901.49012
,[30] The geometry of dissipative evolution equations: the porous medium equation. Comm. PDE, 26 (2001), 101-174. | MR 1842429 | Zbl 0984.35089
,[31] Quasigeodesics and gradient curves in Alexandrov spaces. Unpublished preprint (1994). | MR 2693118
and ,[32] | MR 1083357 | Zbl 0731.60002
- , Continuous Martingales and Brownian Motion, Springer Verlag (1991).[33] Gradient flows and diffusion semigroups in metric spaces and lower curvature bounds. CRAS note (2007), in press. | MR 2344814
,[34] Random Surfaces, Asterisque, No. 304 (2005). | MR 2251117
,[35] Stochastic equations for diffusions in a bounded region, Theory Probab. Appl.6 (1961), 264-274.
,[36] Interface motion in models with stochastic dynamics, J. Stat. Phys.71 (1993), 1081-1132. | MR 1226387 | Zbl 0935.82546
,[37] | MR 532498 | Zbl 0426.60069
- , Multidimensional diffusion processes. Springer Verlag, second ed (1997).[38] Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J.9 (1979), 163-177. | MR 529332 | Zbl 0423.60055
,[39] 58 (2003), AMS. | MR 1964483 | Zbl 1106.90001
, Topics in optimal transportation. Graduate Studies in Mathematics,[40] Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Related Fields, 123 no. 4 (2002), 579-600. | MR 1921014 | Zbl 1009.60047
,[41] Integration by parts on -Bessel Bridges, , and related SPDEs, Annals of Probability, 31 no. 1 (2003), 323-348. | MR 1959795 | Zbl 1019.60062
,[42] Fluctuations for a interface model with repulsion from a wall, Prob. Theory and Rel. Fields, 129 no. 3 (2004), 315-339. | MR 2128236 | Zbl 1073.60099
,[43] Convergence of approximations of monotone gradient systems, Journal of Evolution Equations, 6 no. 4 (2006), 601-619. | MR 2267701 | Zbl 1130.35140
,