If the second order problem has maximal regularity for some , then it has maximal regularity for every .
Si prova che se il problema del secondo ordine ha regolarità massimale per qualche allora ha regolarità massimale per ogni .
@article{BUMI_2008_9_1_1_147_0,
author = {Ralph Chill and Sachi Srivastava},
title = {$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {1},
year = {2008},
pages = {147-157},
zbl = {1210.34078},
mrnumber = {2388002},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_147_0}
}
Chill, Ralph; Srivastava, Sachi. $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 147-157. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_147_0/
[1] - , A unified approach to abstract linear non-autonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. | MR 934508 | Zbl 0646.34006
[2] - - - , Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birkhäuser, Basel, 2001. | MR 1886588 | Zbl 0978.34001
[3] - - , Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. USA, 48 (1962), 356-365. | MR 133653 | Zbl 0103.33402
[4] - , On maximal regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. B, 5 (1986), 165-175. | MR 841623 | Zbl 0608.35027
[5] - , -maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781. | MR 2190142 | Zbl 1101.34043
[6] - , Sommes d'opérateurs linéaires et èquations différentielles opérationnelles, J. Math. Pures Appl., 54 (1975), 305-387. | MR 442749 | Zbl 0315.47009
[7] - , Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. VIII, INSTN: Collection Enseignement, Masson, Paris, 1987. | MR 918560
[8] , Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 547-558. | MR 176192 | Zbl 0196.44803
[9] - , On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. | MR 910825 | Zbl 0615.47002
[10] , Operator valued Fourier multipliers, Topics in nonlinear analysis. The Herbert Amann anniversary volume (, , eds.), Progress in Nonlinear Differential Equations and Their Applications, vol. 35, Birkhauser Verlag, Basel, 1999, pp. 363-380. | MR 1725578 | Zbl 0919.47021
[11] - , Somme d'opérateurs linéaires de type parabolique. I, Boll. Un. Mat. Ital. B (7) 1 (1987), 545-569. | MR 896340 | Zbl 0627.47005
[12] , Coerciveness inequalities for abstract parabolic equations, Dokl. Akad. Nauk SSSR, 157 (1964), 52-55. | MR 166487
[13] , Nonlinear Functional Analysis and Its Applications. I, Springer Verlag, New York, Berlin, Heidelberg, 1990. | MR 1033497 | Zbl 0684.47029