Loading [MathJax]/extensions/MathZoom.js
Lp Maximal Regularity for Second Order Cauchy Problems is Independent of p
Chill, Ralph ; Srivastava, Sachi
Bollettino dell'Unione Matematica Italiana, Tome 1 (2008), p. 147-157 / Harvested from Biblioteca Digitale Italiana di Matematica

If the second order problem u¨+u˙+Au=f has Lp maximal regularity for some p(1,), then it has Lp maximal regularity for every p(1,).

Si prova che se il problema del secondo ordine u¨+u˙+Au=f ha regolarità massimale Lp per qualche p(1,) allora ha regolarità massimale Lp per ogni p(1,).

Publié le : 2008-02-01
@article{BUMI_2008_9_1_1_147_0,
     author = {Ralph Chill and Sachi Srivastava},
     title = {$L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1},
     year = {2008},
     pages = {147-157},
     zbl = {1210.34078},
     mrnumber = {2388002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_147_0}
}
Chill, Ralph; Srivastava, Sachi. $L^p$ Maximal Regularity for Second Order Cauchy Problems is Independent of $p$. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 147-157. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_147_0/

[1] Acquistapace, P. - Terreni, B., A unified approach to abstract linear non-autonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107. | MR 934508 | Zbl 0646.34006

[2] Arendt, W. - Batty, C. J. K. - Hieber, M. - Neubrander, F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birkhäuser, Basel, 2001. | MR 1886588 | Zbl 0978.34001

[3] Benedek, A. - Calderón, A. P. - Panzone, R., Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. USA, 48 (1962), 356-365. | MR 133653 | Zbl 0103.33402

[4] Cannarsa, P. - Vespri, V., On maximal Lp regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. B, 5 (1986), 165-175. | MR 841623 | Zbl 0608.35027

[5] Chill, R. - Srivastava, S., Lp-maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781. | MR 2190142 | Zbl 1101.34043

[6] Da Prato, G. - Grisvard, P., Sommes d'opérateurs linéaires et èquations différentielles opérationnelles, J. Math. Pures Appl., 54 (1975), 305-387. | MR 442749 | Zbl 0315.47009

[7] Dautray, R. - Lions, J.-L., Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. VIII, INSTN: Collection Enseignement, Masson, Paris, 1987. | MR 918560

[8] De Simon, L., Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 547-558. | MR 176192 | Zbl 0196.44803

[9] Dore, G. - Venni, A., On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. | MR 910825 | Zbl 0615.47002

[10] Hieber, M., Operator valued Fourier multipliers, Topics in nonlinear analysis. The Herbert Amann anniversary volume (J. Escher, G. Simonett, eds.), Progress in Nonlinear Differential Equations and Their Applications, vol. 35, Birkhauser Verlag, Basel, 1999, pp. 363-380. | MR 1725578 | Zbl 0919.47021

[11] Labbas, R. - Terreni, B., Somme d'opérateurs linéaires de type parabolique. I, Boll. Un. Mat. Ital. B (7) 1 (1987), 545-569. | MR 896340 | Zbl 0627.47005

[12] Sobolevskii, P. E., Coerciveness inequalities for abstract parabolic equations, Dokl. Akad. Nauk SSSR, 157 (1964), 52-55. | MR 166487

[13] Zeidler, E., Nonlinear Functional Analysis and Its Applications. I, Springer Verlag, New York, Berlin, Heidelberg, 1990. | MR 1033497 | Zbl 0684.47029