Bi-space global and exponential attractors for the time continuous dynamical systems are considered and the bounds on their fractal dimension are discussed in the context of the smoothing properties of the system between appropriately chosen function spaces. The case when the system exhibits merely some partial smoothing properties is also considered and applications to the sample problems are given.
In questo lavoro sono considerate le nozioni di attrattori globali ed esponenziali "bi-space" per sistemi dinamici continui, e discusse limitazioni relative alla loro dimensione frattale in spazi di funzioni opportuni. Di particolare interesse è il caso in cui il sistema presenta un parziale effetto regolarizzante, ed alcuni esempi con questa proprietà sono mostrati.
@article{BUMI_2008_9_1_1_121_0, author = {Jan W. Cholewa and Radoslaw Czaja and Gianluca Mola}, title = {Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {121-145}, zbl = {1213.37111}, mrnumber = {2388001}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2008_9_1_1_121_0} }
Cholewa, Jan W.; Czaja, Radoslaw; Mola, Gianluca. Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors. Bollettino dell'Unione Matematica Italiana, Tome 1 (2008) pp. 121-145. http://gdmltest.u-ga.fr/item/BUMI_2008_9_1_1_121_0/
[1] Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663. | MR 2351571 | Zbl 1146.35015
- - - ,[2] Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83. | MR 799657 | Zbl 0564.35060
,[3] | MR 1156492 | Zbl 0778.58002
- , Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.[4] Local well posedness for strongly damped wave equations with critical nonlinearities, Bulletin of the Australian Mathematical Society, 66 (2002), 443-463. | MR 1939206 | Zbl 1020.35059
- ,[5] Attractors for strongly damped wave equations with critical nonlinearities, Pacific Journal of Mathematics, 207 (2002), 287-310. | MR 1972247 | Zbl 1060.35082
- ,[6] Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. | MR 2022944 | Zbl 1077.35031
- ,[7] 1354, Springer, 1988, 234-256. | MR 996678
- , Proof of two conjectures on structural damping for elastic systems: The case a=1/2, Lecture Notes in Mathematics[8] | MR 1778284 | Zbl 0954.35002
- , Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.[9] Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215. | MR 2207550 | Zbl 1100.35018
- - ,[10] Exponential attractors in Banach spaces, J. Dynam. Differential Equations, 13 (2001), 791-806. | MR 1860286 | Zbl 1040.37069
- ,[11] | MR 1335230 | Zbl 0842.58056
- - - , Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons, Ltd., Chichester, 1994.[12] Exponential attractors for a nonlinear reaction-diffusion system in , C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713- 718. | MR 1763916 | Zbl 1151.35315
- - ,[13] Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Systems, 10 (2004), 211-238. | MR 2026192 | Zbl 1060.35011
- - - ,[14] A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127. | MR 2170551 | Zbl 1078.37047
- - - ,[15] Exponential attractors for a phase-field model with memory and quadratic nonlinearities, Indiana Univ. Math. J., 53 (2004), 719- 754. | MR 2086698 | Zbl 1070.37056
- - ,[16] | MR 941371
, Asymptotic Behavior of Dissipative Systems, AMS, Providence, R.I., 1988.[17] | MR 610244 | Zbl 0456.35001
, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.[18]
, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.[19] | MR 241822
- - , Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, AMS, Providence, R.I., 1967.[20] Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Diff. Equations, 149 (1998), 191-210. | MR 1646238 | Zbl 0912.35029
- ,[21] Large time behavior via the method of -trajectories, J. Diff. Equations, 181 (2002), 243-279. | MR 1907143
- ,[22] Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., to appear. | MR 2373219 | Zbl 1144.35354
,[23] Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, submitted. | MR 2373219 | Zbl 1185.35027
,[24] On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533. | MR 2116726 | Zbl 1068.35077
- ,[25] Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506. | MR 2229785 | Zbl 1113.35023
- ,[26] A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486. | MR 2289833 | Zbl 1152.47046
- ,[27] Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. | MR 1907454 | Zbl 0999.35014
- ,[28] Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Handbook of Dynamical Systems Vol. 2, North-Holland, Amsterdam, 2002, 835-883.
,[29] | MR 953967 | Zbl 0662.35001
, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.[30] | MR 500580
, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, Berlin, 1978.[31] Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985, Springer-Verlag, Berlin, 1986, 254-266. | MR 872532
,[32] Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Can. J. Math., 32 (1980), 631-643. | MR 586981 | Zbl 0414.35046
,