In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation where are vector fields satisfying Hörmander condition and . We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case we are able to give necessary condition too.
In questo articolo viene studiata la regolarità locale per la soluzione generalizzata del problema di Dirichlet relativo all'equazione dove sono campi vettoriali soddisfacenti la condizione di Hörmander e . Viene data una formula di rappresentazione per la soluzione generalizzata in termini di funzione di Green. I risultati sono ottenuti grazie a opportune stime di quest'ultima. Nel caso in cui i teoremi provati sono invertibili.
@article{BUMI_2007_8_10B_3_989_0, author = {Francesco Borrello}, title = {Degenerate Elliptic Equations and Morrey Spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {989-1011}, zbl = {1184.35143}, mrnumber = {2507910}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_989_0} }
Borrello, Francesco. Degenerate Elliptic Equations and Morrey Spaces. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 989-1011. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_989_0/
[1] A non-existence problem for degenerate elliptic PDE's, Comm. Partial Differential Equations, Communications in Partial Differential Equations, 25, 7-8 (2000), 1371-1398. | MR 1765139
,[2] Remarques sur les fonctions de Green associées aux opérateurs de Hörmander, C. R. Acad. Sci. Paris Sér. I Math., 330, 6 (2000), 433-436. | MR 1756954 | Zbl 0949.35023
- ,[3] An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations, 18, 9-10 (1993), 1765-1794. | MR 1239930 | Zbl 0802.35024
- - ,[4] Regularity of solutions to the Dirichlet problem for degenerate elliptic equation, Chinese Ann. Math. Ser. B, 24, 4 (2003), 529-540. | MR 2024992 | Zbl 1046.35019
,[5] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105. | MR 1880 | Zbl 65.0398.01
,[6] Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115, 3 (1993), 699-734. | MR 1221840 | Zbl 0795.35018
- - ,[7] A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 11 (1999), 387-413. | MR 1719837 | Zbl 0940.35057
,[8] Poisson equations and Morrey spaces, J. Math. Anal. Appl., 163, 1 (1992), 157-167. | MR 1144713 | Zbl 0780.35020
,[9] Dirichlet problem characterization of regularity, Manuscripta Math., 84, 1 (1994), 47-56. | MR 1283326 | Zbl 0816.35009
,[10] Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr., 272 (2004), 3-10. | MR 2079757 | Zbl 1149.35347
- ,[11] Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10, 4 (1983), 523-541. | MR 753153 | Zbl 0552.35032
- ,[12] Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11, 1 (1997), 83-117. | MR 1448000 | Zbl 0952.49010
- - ,[13] Compensation couples and isoperimetric estimates for vector fields, Colloq. Math., 74, 1 (1997), 9-27. | MR 1455453 | Zbl 0915.46028
- ,[14] The Green function for uniformly elliptic equations, Manuscripta Math., 37, 3 (1982), 303-342. | MR 657523 | Zbl 0485.35031
- ,[15] Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | MR 181815 | Zbl 0125.33302
- ,[16] Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43-77. | MR 161019 | Zbl 0116.30302
- - ,[17] Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8, 3 (1992), 367-439. | MR 1202416 | Zbl 0804.35015
,[18] Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 1-2 (1985), 103-147. | MR 793239 | Zbl 0578.32044
- - ,[19] Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math., 78, 1 (1984), 143-160. | MR 762360
,[20] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, 1 (1965), 189-258. | MR 192177 | Zbl 0151.15401
,