In this article we consider surfaces in the product space of the hyperbolic plane with the real line. The main results are: a description of some geometric properties of minimal graphs; new examples of complete minimal graphs; the local classification of totally umbilical surfaces.
-In questo lavoro si considerano le superfici nel prodotto del piano iperbolico con la retta reale. I risultati principali sono: la descrizione geometrica di alcune proprietà dei grafici minimi; la determinazione di nuovi esempi di grafici minimi completi; la classificazione locale delle superfici totalmente ombelicali.
@article{BUMI_2007_8_10B_3_939_0, author = {Stefano Montaldo and Irene I. Onnis}, title = {A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {939-950}, zbl = {1183.53055}, mrnumber = {2507907}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_939_0} }
Montaldo, Stefano; Onnis, Irene I. A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 939-950. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_939_0/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., 193 (2004), 141-174. | MR 2134864
- ,[2] 2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87 (1995), 1-12. | MR 1329436 | Zbl 0827.53009
- - , SO([3] 13. Publish or Perish, Houston, 1990. | MR 1075013
, Submanifolds and isometric immersions, Mathematics Lecture Series,[4] Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | MR 164306 | Zbl 0122.40102
- ,[5] Harmonic maps and constant mean curvature surfaces in , arXiv:math.DG/0507386. | MR 2343386
- ,[6] Invariant CMC surfaces in , Glasg. Math. J., 46 (2004), 311-321. | MR 2062613 | Zbl 1055.53045
- ,[7] Invariant surfaces in with constant (Gauss or mean) curvature, Publ. de la RSME, 9 (2005), 91-103.
- ,[8] The theory of minimal surfaces in , Comment. Math. Helv., 80 (2005), 811-858. | MR 2182702 | Zbl 1085.53049
- ,[9] Minimal surfaces in , Bull Braz. Math. Soc., 33 (2002), 263-292. | MR 1940353
- ,[10] Global properties of constant mean curvature surfaces in , Pacific J. Math., to appear. | MR 2247859
- ,[11] Superfícies em certos espaços homogêneos tridimensionais, Ph.D. Thesis, University of Campinas (2005), available online at http://libdigi.unicamp.br/document/?code=vtls000364041.
,[12] Geometria delle superfici in certi spazi omogenei tridimensionali, Boll. Un. Mat. Ital. A (8) 9 (2006), 267-270.
,[13] Minimal surfaces in , Global differential geometry, MAA Stud. Math., 27, Math. Assoc. America, Washington, DC, (1989), 73-98. | MR 1013809
,[14] Minimal surfaces in , Illinois Jour. Math., 46 (2002), 1177-1195. | MR 1988257 | Zbl 1036.53008
,[15] Screw motion surfaces in and , Illinois J. Math., 49 (2005), 1323-1362. | MR 2210365 | Zbl 1093.53068
- ,