Acute Triangulations of Doubly Covered Convex Quadrilaterals
Yuan, Liping ; Zamfirescu, Carol T.
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 933-938 / Harvested from Biblioteca Digitale Italiana di Matematica

Motivated by various applications triangulations of surfaces using only acute triangles have been recently studied. Triangles and quadrilaterals can be triangulated with at most 7, respectively 10, acute triangles. Doubly covered triangles can be triangulated with at most 12 acute triangles. In this paper we investigate the acute triangulations of doubly covered convex quadrilaterals, and show that they can be triangulated with at most 20 acute triangles.

Recentemente, motivate da varie applicazioni, sono state studiate le triangolazioni di superfici utilizzando soltanto triangoli acutangoli. I triangoli e i quadrilateri possono essere triangolati, rispettivamente, con al più 10 triangoli acutangoli. I triangoli coperti doppiamente possono essere triangolati con al più 12 triangoli. In questo lavoro noi trattiamo le triangolazioni di quadrilateri convessi coperti doppiamente e mostriamo che tali quadrilateri possono essere triangolati con al più 20 triangoli acutangoli.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_933_0,
     author = {Liping Yuan and Carol T. Zamfirescu},
     title = {Acute Triangulations of Doubly Covered Convex Quadrilaterals},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {933-938},
     zbl = {1185.52018},
     mrnumber = {2507906},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_933_0}
}
Yuan, Liping; Zamfirescu, Carol T. Acute Triangulations of Doubly Covered Convex Quadrilaterals. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 933-938. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_933_0/

[1] Baker, B. S. - Grosse, E. - Rafferty, C. S., Nonobtuse triangulations of polygons, Discrete Comput. Geom., 3 (1988), 147-168. | MR 920700 | Zbl 0634.57012

[2] Bern, M. - Mitchell, S. - Ruppert, J., Linear-size nonobtuse triangulations of polygons, Discrete Comput. Geom., 14 (1995), 411-428. | MR 1360945 | Zbl 0841.68118

[3] Burago, Y. D. - Zalgaller, V. A., Polyhedral embedding of a net (Russian), Vestnik Leningrad. Univ., 15 (1960), 66-80. | MR 116317 | Zbl 0098.35403

[4] Cassidy, C. - Lord, G., A square acutely triangulated, J. Recreational. Math., 13 (1980/81), 263-268. | MR 625260

[5] Gardner, M., New Mathematical Diversions, Mathematical Association of America, Washington D.C., 1995. | MR 1335231 | Zbl 0842.00006

[6] Goldberg, M., Problem E1406: Dissecting an obtuse triangle into acute triangles, American Mathematical Monthly, 67 (1960), 923.

[7] Hangan, T. - Itoh, J. - Zamfirescu, T., Acute triangulations, Bull. Math. Soc. Sci. Math. Roumanie, 43 (91) No. 3-4 (2000), 279-285. | MR 1837482 | Zbl 1048.51501

[8] Itoh, J. - Zamfirescu, T., Acute triangulations of the regular dodecahedral surface, Europ. J. Combinatorics, to appear. | MR 2305575 | Zbl 1115.52004

[9] Itoh, J. - Zamfirescu, T., Acute triangulations of the regular icosahedral surface, Discrete Comput. Geom., 31 (2004), 197-206. | MR 2060635 | Zbl 1062.51014

[10] Maehara, H., On acute triangulations of quadrilaterals, Proceedings of JCDCG 2000, Lecture Notes in Computer Science, 2098 (2001), 237-354. | MR 2043655 | Zbl 0998.52005

[11] Maehara, H., Acute triangulations of polygons, Europ. J. Combinatorics, 23 (2002), 45-55. | MR 1878775 | Zbl 1006.65019

[12] Yuan, L., Acute triangulations of polygons, Discrete Comput. Geom., 34 (2005), 697- 706. | MR 2173934 | Zbl 1112.52002

[13] Zamfirescu, C., Acute triangulations of the double triangle, Bull. Math. Soc. Sci. Math. Roumanie, 47, No. 3-4 (2004), 189-193. | MR 2121985 | Zbl 1114.52012

[14] Zamfirescu, T., Acute triangulations: a short survey, Proc. 6th Annual Conference Romanian Soc. Math. Sciences, I (2002), 10-18. | MR 2017183