We introduce a new class of spaces, called Hausdorff modulo or mod spaces with respect to an ideal which contains the class of all Hausdorff spaces. Characterizations of these spaces are given and their properties are investigated. The concept of compactness modulo an ideal was introduced by Newcomb in 1967 and studied by Hamlett and Jankovic in 1990. We study the properties of -compact subsets in Hausdorff modulo spaces and generalize some results of Hamlett and Jankovic. -regular space was introduced by Hamlett and Jankovic in 1994. We further investigate the concept of -regularity with regard to its preservation by functions, subspaces and product.
Introduciamo una nuova classe di spazi, detti spazi di Hausdorff modulo o mod rispetto ad un ideale che contiene la classe di tutti gli spazi di Hausdorff. Diamo delle caratterizzazioni di questi spazi e studiamo le loro proprietà. Il concetto di compattezza modulo un ideale fu introdotto da Newcomb nel 1967 e studiato da Hamlett e Jankovic nel 1990. Studiamo le proprietà dei sottoinsiemi -compatti in spazi di Hausdorff modulo e generalizziamo alcuni risultati di Hamlett e Jankovic. Gli spazi -regolari furono introdotti da Hamlett e Jankovic nel 1994. Studiamo ulteriormente il concetto di -regolarità rispetto alla sua conservazione da parte di funzioni, sottospazi e prodotto.
@article{BUMI_2007_8_10B_3_917_0, author = {D. Sivaraj and V. Renuka Devi}, title = {Some Separation Axioms Via Ideals}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {917-931}, zbl = {1182.54026}, mrnumber = {2507905}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_917_0} }
Sivaraj, D.; Renuka Devi, V. Some Separation Axioms Via Ideals. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 917-931. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_917_0/
[1] On quasi -openness and quasi -continuity, Tamkang J. Maths., 31 (2000), 101-108. | MR 1762720 | Zbl 0986.54024
- - ,[2] On Hausdorff spaces via topological ideals and -irresolute functions, Annals of the New York Academy of Sciences, 767 (1995), 28-38. | MR 1462379 | Zbl 0924.54029
,[3] On compactness with respect to countable extensions of ideals and the generalized Banach category Theorem, Acta. Math. Hung., 88 (2000), 53-58. | MR 1780512 | Zbl 0958.54024
- ,[4] Ideal resolvability, Topology and its Applications, 93 (1999), 1-16. | MR 1684048
- - ,[5] *-topological properties, Inter. J. Math. and Math. Sci., 13 (1990), 507-512. | MR 1068014
- ,[6] Local compactness with respect to an ideal, Kyungpook Math. J., 32 (1992), 31-43. | MR 1170488 | Zbl 0767.54019
- ,[7] Compactness with respect to an Ideal, Boll. U.M.I., (7) 4-B (1990), 849-861. | MR 1086708 | Zbl 0741.54001
- ,[8] Compatible Extensions of Ideals, Boll.U.M.I., (7) 6-B (1992), 453-465. | MR 1191948 | Zbl 0818.54002
- ,[9] Countable Compactness with respect to an Ideal, Math. Chronicle, 20 (1991), 109-126. | MR 1137878 | Zbl 0791.54030
- - ,[10] On weaker forms of paracompactness, countable compactness and Lindelofness, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 728 (1994), 41-49. | MR 1467761 | Zbl 0911.54018
- ,[11] New Topologies from old via Ideals, Amer. Math. Monthly, 97, No. 4 (1990), 295-310. | MR 1048441 | Zbl 0723.54005
- ,[12] Concerning continuity apart from a meager set, Proc. Amer. Math. Soc., 98 (1986), 324-328. | MR 854041 | Zbl 0606.54008
- ,[13] I, Academic Press, New York,1966. | MR 217751
, Topology, Vol[14] On Hausdorff spaces via ideals and quasi I-irresolute functions, Chaos, Solitons and Fractals, 14 (2002), 619-625. | MR 1906922 | Zbl 1010.54022
,[15] Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
,[16] On functions having the property of Baire, Real Analysis Exchange, 19 (2) (1993/94), 589-597. | MR 1282677 | Zbl 0813.54006
- ,[17] Product of Nearly compact Spaces, Trans. Amer. Math. Soc., 124 (1966), 131-147. | MR 203679 | Zbl 0151.30001
- ,[18] The Localization Theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51-61. | MR 10961 | Zbl 0061.39308
,[19] | MR 115151
, Set Topology, Chelsea Publishing Company, 1960.