The simplest proof of Jacobi's triple product identity originally due to Cauchy (1843) and Gauss (1866) is reviewed. In the same spirit, we prove by means of induction principle and finite difference method, a finite form of the quintuple product identity. Similarly, the induction principle will be used to give a new proof of another algebraic identity due to Guo and Zeng (2005), which can be considered as another finite form of the quintuple product identity.
La famosa identità di Jacobi riguardante il prodotto triplo viene esaminata grazie alle due dimostrazioni piu semplici dovute a Cauchy (1843) e Gauss (1866). Applicando il principio di induzione ed il metodo di differenze finite, lo stesso spirito ci conduce alla riconferma delle due forme finite dell'identità di prodotto quintuplo.
@article{BUMI_2007_8_10B_3_867_0, author = {Wenchang Chu}, title = {Jacobi's Triple Product Identity and the Quintuple Product Identity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {867-874}, zbl = {1183.33030}, mrnumber = {2507902}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_867_0} }
Chu, Wenchang. Jacobi's Triple Product Identity and the Quintuple Product Identity. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 867-874. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_867_0/
[1] The quintuple product identity and shifted partition functions, J. Comput. Appl. Math., 68 (1996), 3-13. | MR 1418747 | Zbl 0867.11071
,[2] A simple proof of Jacobi's triple product identity, Proc. Amer. Math., 16 (1965), 333-334. | MR 171725 | Zbl 0132.30901
,[3] Applications of basic hypergeometric functions, SIAM Review, 16 (1974), 441-484. | MR 352557 | Zbl 0299.33004
,[4] | MR 1688958
- - , Special Functions, Cambridge University Press, Cambridge, 2000.[5] Some properties of partitions, Proc. London Math. Soc., 4 (1954), 84-106. | MR 60535 | Zbl 0055.03805
- ,[6] Series of hypergeometric type which are infinite in both directions, Quart. J. Math. (Oxford) 7 (1936), 105-115. | Zbl 62.0410.05
,[7] On the simplification of some identities of the Rogers-Ramanujan type, Proc. London Math. Soc., 1 (1951), 217-221. | MR 43839 | Zbl 0043.06103
,[8] A simple proof of the quintuple product identity, Proc. Amer. Math. Society, 32, 1 (1972), 42-44. | MR 289316
- ,[9] Finite form of the quintuple product identity, Journal of Combinatorial Theory (Series A), 113, 1 (2006), 185-187. | MR 2192776 | Zbl 1145.11036
- - ,[10] Durfee rectangles and the Jacobi triple product identity, Acta Math. Sinica , 9, 1 (1993), 24-26. | MR 1235637 | Zbl 0782.05008
,[11] Abel's Lemma on summation by parts and Ramanujan's -series Identity, Aequationes Mathematicae, 72, 1/2 (2006), 172-176. | MR 2258814 | Zbl 1116.33018
,[12] Abel's Method on summation by parts and Hypergeometric Series, Journal of Difference Equations and Applications, 12, 8 (2006). | MR 2248785 | Zbl 1098.33003
,[13] Abel's Lemma on summation by parts and Basic Hypergeometric Series, Advances in Applied Mathematics, 39, 4 (2007), 490-514. | MR 2356433 | Zbl 1131.33008
,[14] Abel's Method on summation by parts and Terminating Well- Poised q-Series Identities, Journal of Computational and Applied Mathematics, 207, 2 (2007), 360-370. | MR 2345255 | Zbl 1123.33013
- ,[15] The quintuple product identity, International J. of Number Theory, 2, 1 (2006), 115-161. | MR 2217798 | Zbl 1159.33300
,[16] Theta function identities, J. Math. Anal. Appl., 147, 1 (1990), 97-121. | MR 1044689 | Zbl 0707.11033
,[17] An easy proof of the triple product identity, Amer. Math. Month., 88 (1981), 270-272. | MR 610489 | Zbl 0471.40001
,[18] On the quintuple product identity, Proc. Amer. Math. Soc., 127, 3 (1999), 771-778. | MR 1487364 | Zbl 0932.11029
- ,[19] | MR 2128719 | Zbl 1129.33005
- , Basic Hypergeometric Series (2nd edition), Cambridge University Press, 2004.[20] Some identities in combinatorial analysis, Quart. J. Math. Oxford, 12 (1961), 285-290. | MR 136551 | Zbl 0107.25101
,[21] A generalization of the quintuple product identity, J. Austral. Math. Soc., A44 (1988), 42-45. | MR 914402 | Zbl 0656.05008
[22] A combinatorial proof of the triple product identity, Amer. Math. Month., 91 (1984), 420-423. | MR 759217 | Zbl 0551.05016
,[23] An identity in combinatorial analysis, Proc. Glasgow Math. Ass., 5 (1961), 197-200. | MR 138900 | Zbl 0107.25102
,[24] Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type, Electronic J. of Combinatorics, 1 (1994), R#10. | MR 1293400 | Zbl 0814.05009
,[25] Two identities of Bailey, J. London Math. Soc., 27 (1952), 510-511. | MR 50067
,[26] On Watson's quintuple product identity, Proc. Amer. Math. Society, 26, 1 (1970), 23-27. | MR 263770 | Zbl 0203.30502
- ,[27] Theorems stated by Ramanujan VII: Theorems on continued fractions, J. London Math. Soc., 4 (1929), 39-48. | MR 1574903 | Zbl 55.0273.01
,[28] Ramanujan's Vertumung über Zerfallungsanzahlen, J. Reine Angrew. Math., 179 (1938), 97-128. | MR 1581588
,[29] An enumerative proof of an identity of Jacobi, J. of London Math. Soc., 40 (1965), 55-57. | MR 169826 | Zbl 0125.02503
,[30] Short proofs of summation and transformation formulas for basic hypergeometric series, Journal of Mathematical Analysis and Applications, 327, 1 (2007), 310-325. | MR 2277415 | Zbl 1106.33017
- ,