In this paper we prove the existence of a solution for a problem whose model is: with in and , .
In questo lavoro viene dimostrata l'esistenza di una soluzione per un problema il cui modello è: con in e , .
@article{BUMI_2007_8_10B_3_785_0, author = {Tommaso Leonori}, title = {Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {785-795}, zbl = {1184.35129}, mrnumber = {2507896}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_785_0} }
Leonori, Tommaso. Bounded Solutions for Some Dirichlet Problems with $L^1(\Omega)$ Data. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 785-795. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_785_0/
[1] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241-273. | MR 1354907
- . - - - ,[2] A semilinear equation in , Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2, no. 4 (1975), 523-555. | MR 390473
- - ,[3] On the regularizing effect of strongly increasing lower order terms, J. Evol. Equ., 3, no. 2 (2003), 225-236 | MR 1980975 | Zbl 1225.35085
,[4] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. | MR 1025884
- ,[5] Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. | MR 980979 | Zbl 0687.35042
- - ,[6] estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23, no. 2 (1992), 326-333. | MR 1147866 | Zbl 0785.35033
- - ,[7] Semi-linear second-order elliptic equations in , J. Math. Soc. Japan, 25 (1973), 565-590. | MR 336050 | Zbl 0278.35041
- ,[8] Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math., 98 (2006), 349-396. | MR 2254490 | Zbl 1132.35366
- - ,[9] Quelque resultat de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. | MR 194733 | Zbl 0132.10502
- ,