Computation of Biharmonic Poisson Kernel for the Upper Half Plane
Abkar, Ali
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 769-783 / Harvested from Biblioteca Digitale Italiana di Matematica

We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.

Consideriamo innanzitutto il nucleo biarmonico di Poisson per il disco unitario e studiamo il comportamento al bordo dei potenziali associati a questa funzione nucleo. Useremo poi alcune proprietà del nucleo biarmonico di Poisson per il disco unitario per calcolare l'analogo nucleo biarmonico di Poisson per il semipiano superiore.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_769_0,
     author = {Ali Abkar},
     title = {Computation of Biharmonic Poisson Kernel for the Upper Half Plane},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {769-783},
     zbl = {1182.31001},
     mrnumber = {2507895},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_769_0}
}
Abkar, Ali. Computation of Biharmonic Poisson Kernel for the Upper Half Plane. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 769-783. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_769_0/

[1] Abkar, A., On the mean convergence of biharmonic functions, J. Sci. I.R. Iran, 17 (2006), 337-342. | MR 2517972

[2] Abkar, A. - Hedenmalm, H., A Riesz representation formula for super-biharmonic functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), 305-324. | MR 1833243 | Zbl 1009.31001

[3] Garabedian, P., Partial Differential Equations, John Wiley and Sons, Inc., New York-London-Sydney, (1964). | MR 162045 | Zbl 0124.30501

[4] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981. | MR 628971 | Zbl 0469.30024

[5] Garnett, J. B. - Marshall, D. E., Harmonic measure, Cambridge University Press, London, 2005. | MR 2150803

[6] Hedenmalm, H., A computation of Green function for the weighted biharmonic operators Δ|z|-2aΔ con a>-1, Duke Math. J.75, no. 1 (1994) 51-78. | MR 1284815

[7] Ransford, T., Potential theory in the complex plane, Cambridge University Press, London Mathematical Society Student Texts28, 1995. | MR 1334766 | Zbl 0828.31001

[8] Rudin, W., Real and complex analysis, McGraw-Hill Book Company, Singapore, 1986. | MR 344043 | Zbl 0142.01701