We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.
Consideriamo innanzitutto il nucleo biarmonico di Poisson per il disco unitario e studiamo il comportamento al bordo dei potenziali associati a questa funzione nucleo. Useremo poi alcune proprietà del nucleo biarmonico di Poisson per il disco unitario per calcolare l'analogo nucleo biarmonico di Poisson per il semipiano superiore.
@article{BUMI_2007_8_10B_3_769_0, author = {Ali Abkar}, title = {Computation of Biharmonic Poisson Kernel for the Upper Half Plane}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {769-783}, zbl = {1182.31001}, mrnumber = {2507895}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_769_0} }
Abkar, Ali. Computation of Biharmonic Poisson Kernel for the Upper Half Plane. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 769-783. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_769_0/
[1] On the mean convergence of biharmonic functions, J. Sci. I.R. Iran, 17 (2006), 337-342. | MR 2517972
,[2] A Riesz representation formula for super-biharmonic functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), 305-324. | MR 1833243 | Zbl 1009.31001
- ,[3] | MR 162045 | Zbl 0124.30501
, Partial Differential Equations, John Wiley and Sons, Inc., New York-London-Sydney, (1964).[4] | MR 628971 | Zbl 0469.30024
, Bounded Analytic Functions, Academic Press, New York, 1981.[5] | MR 2150803
- , Harmonic measure, Cambridge University Press, London, 2005.[6] A computation of Green function for the weighted biharmonic operators con , Duke Math. J.75, no. 1 (1994) 51-78. | MR 1284815
,[7] Potential theory in the complex plane, Cambridge University Press, London Mathematical Society Student Texts28, 1995. | MR 1334766 | Zbl 0828.31001
, , Real and complex analysis, McGraw-Hill Book Company, Singapore, 1986.