We show an existence result for the Cauchy-Dirichlet problem in for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation and the initial datum are bounded nonnegative functions.
In questa nota illustreremo un risultato di esistenza per il problema di Cauchy-Dirichlet in per equazioni paraboliche con parte principale degenere (del tipo "mezzi porosi") aventi un termine di grado inferiore quadratico nel gradiente. Il termine noto e il dato iniziale sono funzioni limitate non negative.
@article{BUMI_2007_8_10B_3_753_0, author = {Daniela Giachetti and Giulia Maroscia}, title = {Porous Medium Type Equations with a Quadratic Gradient Term}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {753-759}, zbl = {1177.35124}, mrnumber = {2351544}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_753_0} }
Giachetti, Daniela; Maroscia, Giulia. Porous Medium Type Equations with a Quadratic Gradient Term. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 753-759. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_753_0/
[1] Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source, Math. Ann., 314 (1999), 703-728. | MR 1709107 | Zbl 0926.35068
- - - ,[2] Existence results for some quasilinear parabolic equations, Nonlinear Anal. T.M.A., 13, 4 (1989), 373-392. | MR 987375 | Zbl 0705.35066
- - ,[3] Quasi-linear Parabolic Equations With Degenerate Coercivity having a Quadratic Gradient Term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 1 (2006), 97-126. | MR 2194583 | Zbl 1103.35040
- - - ,[4] Current issues on singular and degenerate evolution equations, in Evolutionary Equations. Vol. I, Handb. Differ. Equ., 169-286, North-Holland, Amsterdam, The Netherlands (2004). | MR 2103698 | Zbl 1082.35002
- - ,[5] Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiqes and Applications, 22, SMAI (1996). | MR 1616513 | Zbl 0842.35126
- ,[6] | MR 259693 | Zbl 0189.40603
, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969).[7] Boundary value problems for quasilinear degenerate equations modeling fluid flows in porous media, Ph. D. Thesis, Università di Roma ``La Sapienza'' (2006).
,[8] Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, J. Differential Equations, 103, 1 (1993), 146-178. | MR 1218742 | Zbl 0796.35089
- , , The Porous Medium Equation. Mathematical Theory, Oxford Univ. Press (2006).