Porous Medium Type Equations with a Quadratic Gradient Term
Giachetti, Daniela ; Maroscia, Giulia
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 753-759 / Harvested from Biblioteca Digitale Italiana di Matematica

We show an existence result for the Cauchy-Dirichlet problem in QT=Ω×(0,T) for parabolic equations with degenerate principal part (of porous medium type) with a lower order term having a quadratic growth with respect to the gradient. The right hand side of the equation f and the initial datum u0 are bounded nonnegative functions.

In questa nota illustreremo un risultato di esistenza per il problema di Cauchy-Dirichlet in QT=Ω×(0,T) per equazioni paraboliche con parte principale degenere (del tipo "mezzi porosi") aventi un termine di grado inferiore quadratico nel gradiente. Il termine noto f e il dato iniziale u0 sono funzioni limitate non negative.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_753_0,
     author = {Daniela Giachetti and Giulia Maroscia},
     title = {Porous Medium Type Equations with a Quadratic Gradient Term},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {753-759},
     zbl = {1177.35124},
     mrnumber = {2351544},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_753_0}
}
Giachetti, Daniela; Maroscia, Giulia. Porous Medium Type Equations with a Quadratic Gradient Term. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 753-759. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_753_0/

[1] Andreu, F. - Mazon, J. M. - Simondon, F. - Toledo, J., Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source, Math. Ann., 314 (1999), 703-728. | MR 1709107 | Zbl 0926.35068

[2] Boccardo, L. - Murat, F. - Puel, J. P., Existence results for some quasilinear parabolic equations, Nonlinear Anal. T.M.A., 13, 4 (1989), 373-392. | MR 987375 | Zbl 0705.35066

[3] Dall'Aglio, A. - Giachetti, D. - Leone, C. - Segura De Leon, S., Quasi-linear Parabolic Equations With Degenerate Coercivity having a Quadratic Gradient Term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 1 (2006), 97-126. | MR 2194583 | Zbl 1103.35040

[4] Di Benedetto, E. - Urbano, J. M. - Vespri, V., Current issues on singular and degenerate evolution equations, in Evolutionary Equations. Vol. I, Handb. Differ. Equ., 169-286, North-Holland, Amsterdam, The Netherlands (2004). | MR 2103698 | Zbl 1082.35002

[5] Gagneux, G. - Madaune-Tort, M., Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiqes and Applications, 22, SMAI (1996). | MR 1616513 | Zbl 0842.35126

[6] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969). | MR 259693 | Zbl 0189.40603

[7] Maroscia, G., Boundary value problems for quasilinear degenerate equations modeling fluid flows in porous media, Ph. D. Thesis, Università di Roma ``La Sapienza'' (2006).

[8] Porzio, M. M. - Vespri, V., Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations, J. Differential Equations, 103, 1 (1993), 146-178. | MR 1218742 | Zbl 0796.35089

[9] Vazquez, J. L., The Porous Medium Equation. Mathematical Theory, Oxford Univ. Press (2006). | MR 2286292 | Zbl 1124.35035