The concept of statistical convergence of a sequence was first introduced by H. Fast [7] in 1951. Recently, in the literature, the concept of statistical convergence of double sequences has been studied. The main result in this paper is a theorem that gives meaning to the statement: converges statistically to if and only if "most" of the "subsequences" of converge to in the ordinary sense. The results presented here are analogue of theorems in [12], [13] and [6] and are concerned with statistical convergence, first introduced by Freedman and Sember [8]. Other related problems are considered.
Il concetto di convergenza statistica di una successione fu introdotto per la prima volta da H. Fast [7] nel 1951. Recentemente, nella letteratura è stato studiato il concetto di convergenza statistica di successioni doppie. Il risultato principale di questo lavoro è un teorema che dà significato all'affermazione: converge statisticamente a se e solo se "la maggior parte" delle "sottosuccessioni" di convergono a nel senso ordinario. I risultati presentati qui sono l'analogo dei teoremi di [12], [13] e [6] e riguardano la convergenza statistica introdotta per la prima volta da Freedman e Sember [8]. Vengono anche presi in considerazione altri problemi correlati.
@article{BUMI_2007_8_10B_3_727_0, author = {Harry I. Miller}, title = {A-Statistical Convergence of Subsequence of Double Sequences}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {727-739}, zbl = {1139.40001}, mrnumber = {2351542}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_727_0} }
Miller, Harry I. A-Statistical Convergence of Subsequence of Double Sequences. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 727-739. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_727_0/
[1] | MR 1324786
, Probability and Measure, Third Edition, Wiley and Sons, 1995.[2] Generalized asymptotic density, Amer. J. Math., 74 (1953), 334-346. | MR 54000 | Zbl 0050.05901
,[3] The statistical and strong p-Cesáro convergence of sequences, Analysis, 8 (1988), 47-63. | MR 954458 | Zbl 0653.40001
,[4] Almost none of the sequences of 0's and 1's are almost convergent, Int. J. Math. Math. Sci., 13 (1990), 775-778. | MR 1078343 | Zbl 0717.40002
,[5] Two valued measure and summability, Analysis, 10 (1990), 373-385. | MR 1085803 | Zbl 0726.40009
,[6] Subsequence characterizations of statistical convergence of double sequences, Rad. Mat., 12 (2) (2004), 163-175. | MR 2065556 | Zbl 1066.40002
- - ,[7] Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. | MR 48548 | Zbl 0044.33605
,[8] Densities and summability, Pacific J. Math., 95 (1981), 293-305. | MR 632187 | Zbl 0504.40002
- ,[9] On statistical convergence, Analysis, 5 (1985), 301-313. | MR 816582 | Zbl 0588.40001
,[10] Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43-51. | MR 1227502 | Zbl 0794.60012
- ,[11] Lacunary statistical summability, J. Math. Anal. Appl., 173 (1993). | MR 1209334 | Zbl 0786.40004
- ,[12] Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (5) (1995), 1811-1819. | MR 1260176 | Zbl 0830.40002
,[13] On almost convergent and statistically convergent subsequences, Acta Math. Hung., 93 (1-2) (2001), 135-151. | MR 1924673 | Zbl 0989.40002
- ,[14] Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2003), 82-89. | MR 2002719
,