A-Statistical Convergence of Subsequence of Double Sequences
Miller, Harry I.
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 727-739 / Harvested from Biblioteca Digitale Italiana di Matematica

The concept of statistical convergence of a sequence was first introduced by H. Fast [7] in 1951. Recently, in the literature, the concept of statistical convergence of double sequences has been studied. The main result in this paper is a theorem that gives meaning to the statement: s=sij converges statistically A to L if and only if "most" of the "subsequences" of s converge to L in the ordinary sense. The results presented here are analogue of theorems in [12], [13] and [6] and are concerned with A statistical convergence, first introduced by Freedman and Sember [8]. Other related problems are considered.

Il concetto di convergenza statistica di una successione fu introdotto per la prima volta da H. Fast [7] nel 1951. Recentemente, nella letteratura è stato studiato il concetto di convergenza statistica di successioni doppie. Il risultato principale di questo lavoro è un teorema che dà significato all'affermazione: s=sij converge A statisticamente a L se e solo se "la maggior parte" delle "sottosuccessioni" di s convergono a L nel senso ordinario. I risultati presentati qui sono l'analogo dei teoremi di [12], [13] e [6] e riguardano la convergenza A statistica introdotta per la prima volta da Freedman e Sember [8]. Vengono anche presi in considerazione altri problemi correlati.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_727_0,
     author = {Harry I. Miller},
     title = {A-Statistical Convergence of Subsequence of Double Sequences},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {727-739},
     zbl = {1139.40001},
     mrnumber = {2351542},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_727_0}
}
Miller, Harry I. A-Statistical Convergence of Subsequence of Double Sequences. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 727-739. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_727_0/

[1] Billingsley, P., Probability and Measure, Third Edition, Wiley and Sons, 1995. | MR 1324786

[2] Buck, R. C., Generalized asymptotic density, Amer. J. Math., 74 (1953), 334-346. | MR 54000 | Zbl 0050.05901

[3] Connor, J., The statistical and strong p-Cesáro convergence of sequences, Analysis, 8 (1988), 47-63. | MR 954458 | Zbl 0653.40001

[4] Connor, J., Almost none of the sequences of 0's and 1's are almost convergent, Int. J. Math. Math. Sci., 13 (1990), 775-778. | MR 1078343 | Zbl 0717.40002

[5] Connor, J., Two valued measure and summability, Analysis, 10 (1990), 373-385. | MR 1085803 | Zbl 0726.40009

[6] Crnjac, M. - Cunjalo, F. - Miller, H. I., Subsequence characterizations of statistical convergence of double sequences, Rad. Mat., 12 (2) (2004), 163-175. | MR 2065556 | Zbl 1066.40002

[7] Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. | MR 48548 | Zbl 0044.33605

[8] Freedman, A. R. - Sember, J. J., Densities and summability, Pacific J. Math., 95 (1981), 293-305. | MR 632187 | Zbl 0504.40002

[9] Fridy, J., On statistical convergence, Analysis, 5 (1985), 301-313. | MR 816582 | Zbl 0588.40001

[10] Fridy, J. - Orhan, C., Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43-51. | MR 1227502 | Zbl 0794.60012

[11] Fridy, J. - Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl., 173 (1993). | MR 1209334 | Zbl 0786.40004

[12] Miller, H. I., Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (5) (1995), 1811-1819. | MR 1260176 | Zbl 0830.40002

[13] Miller, H. I. - Orhan, C., On almost convergent and statistically convergent subsequences, Acta Math. Hung., 93 (1-2) (2001), 135-151. | MR 1924673 | Zbl 0989.40002

[14] Móricz, F., Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2003), 82-89. | MR 2002719