Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries
Lesimple, Marc ; Valent, Tullio
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 707-714 / Harvested from Biblioteca Digitale Italiana di Matematica

The existence of local families of solutions for perturbation equations is proved when the free operator is covariant under a non linear action of a Lie group.

Si prova l'esistenza locale di famiglie di soluzioni per un problema di perturbazione quando l'operatore imperturbato Áe covariante per un'azione non lineare di un gruppo di Lie.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_707_0,
     author = {Marc Lesimple and Tullio Valent},
     title = {Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {707-714},
     zbl = {1145.47046},
     mrnumber = {2351539},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_707_0}
}
Lesimple, Marc; Valent, Tullio. Local Existence of Solutions for Perturbation Problems with Non Linear Symmetries. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 707-714. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_707_0/

[1] Flato, M. - Pinczon, G. - Simon, J., Non linear representations of Lie groups, Ann. scient. Éc. Norm. Sup. 4e serie t. 10 (1977), 405-418. | MR 507241

[2] Lesimple, M. - Valent, T., Transversality of covariant mappings admitting a potential, Rend. Lincei Mat. Appl., 18 (2007), 117-124. | MR 2314166 | Zbl 1223.22011

[3] Marsden, J. E. - Hughes, T. J. R., Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs, NJ, 1983. | Zbl 0545.73031

[4] Pinczon, G., Non linear multipliers and applications, Pacific J. Math. Vol., 116, No. 2 (1985), 359-400. | MR 771640 | Zbl 0579.22015

[5] Valent, T., An abstract setting for boundary problems with affine symmetries, Rend. Mat. Acc. Lincei, s. 9, Vol. 7 (1996), 47-58. | MR 1437651 | Zbl 0871.47043

[6] Valent, T., Non linear symmetries of mapping. Existence theorems for perturbation problem in the presence of symmetries, Recent Developments in Partial Differential Equations, quaderni di matematica Vol 2, Seconda Università di Napoli, Caserta-1998, 211-253. | MR 1688693 | Zbl 0928.58028

[7] Valent, T., On the notion of potential for mappings between linear spaces. A generalized version of the Poincaré lemma, Bollettino U.M.I. (8) 6-B (2003), 381-392. | MR 1988211 | Zbl 1150.58001