Let us consider a Young's function satisfying the condition together with its complementary function , and let us consider the Dirichlet problem for a second order elliptic operator in divergence form: the unit ball of . In this paper we give a necessary and sufficient condition for the -solvability of the problem, where is the Orlicz Space generated by the function . This means solvability for in the sense of [5], [8], where the case is treated.
Sia una funzione di Young che soddisfa, con la sua funzione complementare , la condizione e siano lo spazio di Orlicz generato dalla funzione e la palla unitaria di . Si presenta una condizione necessaria e sufficiente affinché il problema di Dirichlet per un operatore del secondo ordine ellittico in forma di divergenza: sia -risolubile. La risolubilità per intesa nel senso di [5], [8], dove viene trattato il caso .
@article{BUMI_2007_8_10B_3_661_0, author = {Gabriella Zecca}, title = {On the Dirichlet Problem with Orlicz Boundary Data}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {661-679}, zbl = {1177.35060}, mrnumber = {2351536}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_661_0} }
Zecca, Gabriella. On the Dirichlet Problem with Orlicz Boundary Data. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 661-679. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_661_0/
[1] Indices of function spaces and their relationship to interpolation, Canad. J. Math., 21 (1969), 1245-1254. | MR 412788 | Zbl 0184.34802
,[2] Estimates for operator norms on weighted space and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340, 1 (1993), 253-257. | MR 1124164 | Zbl 0795.42011
,[3] Weighted norm inqualities for the maximal functions and singular integrals, Studia Math., 54 (1974), 221-237. | MR 358205
- ,[4] Inqualities for the maximal functions relative to a metric, Studia Math., 49 (1976), 297-306. | MR 442579
,[5] On estimates of harmonic measure, Arch. Rat. Mech. Anal., 65 (1977), 272-288. | MR 466593 | Zbl 0406.28009
,[6] On the Poisson integral for Lipschitz and domains, Studia Math., 66 (1979), 7-24. | MR 562447 | Zbl 0422.31008
,[7] 116, North-Holland, Amsterdam, (1985). | MR 807149 | Zbl 0578.46046
- , Weighted norm inqualities and related topics, North-Holland Math. Stud., vol.[8] 83 (1991). | MR 1282720
, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Conference Board of the Mathematical Sciences, Amer. Math. Soc.[9] Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284. | MR 667316 | Zbl 0517.42030
- ,[10] On certain properties of W-functions, Bull. Acad. Polon. Sci., 8, 7 , (1960), 439-443. | MR 126158 | Zbl 0101.09001
- ,[11] as a limit case of reverse - Hölder inequality when the exponent tends to 1, Ricerche Mat., XLIV, 1 (1995), 131-144. | MR 1470190 | Zbl 0920.26017
- ,[12] Weighted norm inqualities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | MR 293384 | Zbl 0236.26016
,[13] An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech., 8 (1959), 263-264. | MR 107163 | Zbl 0084.10801
- ,[14] The unsolvability of the Dirichlet problem with boundary data, Rend. Acc. Sc. Fis. Mat. Napoli, 72 (2005), 71-80. | MR 2449907 | Zbl 1211.35090
,